Drug clearance in neonates: a combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction

Bo Hao Tang, Zheng Guan, Karel Allegaert, Yue-E. Wu, Efthymios Manolis, Stephanie Leroux, Bu-Fan Yao, Hai-Yan Shi, Xiao Li, Xin Huang, Wen-Qi Wang, A.-Dong Shen, Xiao-Ling Wang, Tian-You Wang, Chen Kou, Hai-Yan Xu, Yue Zhou, Yi Zheng, Guo-Xiang Hao, Bao-Ping XuAlison H. Thomson, Edmund V. Capparelli, Valerie Biran, Nicolas Simon, Bernd Meibohm, Yoke-Lin Lo, Remedios Marques, Jose-Esteban Peris, Irja Lutsar, Jumpei Saito, Jacobus Burggraaf, Evelyne Jacqz-Aigrain, John van den Anker, Wei Zhao

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)
18 Downloads (Pure)


Background: Population pharmacokinetic evaluations have been widely used in neonatal pharmacokinetic studies, while machine learning has become a popular approach to solving complex problems in the current era of big data. Objective: The aim of this proof-of-concept study was to evaluate whether combining population pharmacokinetic and machine learning approaches could provide a more accurate prediction of the clearance of renally eliminated drugs in individual neonates. Methods: Six drugs that are primarily eliminated by the kidneys were selected (vancomycin, latamoxef, cefepime, azlocillin, ceftazidime, and amoxicillin) as 'proof of concept' compounds. Individual estimates of clearance obtained from population pharmacokinetic models were used as reference clearances, and diverse machine learning methods and nested cross-validation were adopted and evaluated against these reference clearances. The predictive performance of these combined methods was compared with the performance of two other predictive methods: a covariate-based maturation model and a postmenstrual age and body weight scaling model. Relative error was used to evaluate the different methods. Results: The extra tree regressor was selected as the best-fit machine learning method. Using the combined method, more than 95% of predictions for all six drugs had a relative error of < 50% and the mean relative error was reduced by an average of 44.3% and 71.3% compared with the other two predictive methods. Conclusion: A combined population pharmacokinetic and machine learning approach provided improved predictions of individual clearances of renally cleared drugs in neonates. For a new patient treated in clinical practice, individual clearance can be predicted a priori using our model code combined with demographic data.

Original languageEnglish
Pages (from-to)1435-1448
Number of pages14
JournalClinical Pharmacokinetics
Issue number11
Publication statusPublished - 27 May 2021


  • drug clearance
  • neonates
  • combination
  • population pharmacokinetic modelling
  • machine learning
  • individual prediction


Dive into the research topics of 'Drug clearance in neonates: a combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction'. Together they form a unique fingerprint.

Cite this