Doubly stochastic scaling unifies community detection

Luce le Gorrec, Sandrine Mouysset, Daniel Ruiz

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
19 Downloads (Pure)

Abstract

Graph partitioning, or community detection, has been widely investigated in network science. Yet, the correct community structure on a given network is essentially data-driven. Thus, instead of a formal definition, diverse measures have been conceived to capture intuitive desirable properties shared by most of the community structures. In this work, we propose a preprocessing based on a doubly stochastic scaling of network adjacency matrices, to highlight these desirable properties. By investigating a range of community detection measures, and carefully generalising them to doubly stochastic graphs, we show that such a scaling unifies a whole category of these measures—namely, the so-called linear criteria—onto two unique measures to set up. Finally, to help practitioners setting up these measures, we provide an extensive numerical comparison of the capacity of these measures to uncover community structures within stochastic block models, using the Louvain algorithm.

Original languageEnglish
Pages (from-to)141-162
Number of pages22
JournalNeurocomputing
Volume504
Early online date3 Jul 2022
DOIs
Publication statusPublished - 14 Sept 2022

Keywords

  • network analysis
  • community detection
  • graph partitioning measures
  • doubly stochastic scaling

Fingerprint

Dive into the research topics of 'Doubly stochastic scaling unifies community detection'. Together they form a unique fingerprint.

Cite this