Donor-activated alkali metal dipyridylamides: co-complexation reactions with zinc alkyls and reactivity studies with benzophenone

David R. Armstrong, Etienne V. Brouillet, Alan R. Kennedy, Jennifer A. Garden*, Markus Granitzka, Robert E. Mulvey, Joshua J. Trivett

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Previously it was reported that activation of tBu2Zn by [(TMEDA)Na(μ-dpa)]2led to tert-butylation of benzophenone at the challenging para-position, where the sodium amide functions as a metalloligand towards tBu2Zn manifested in crystalline [{(TMEDA)Na(dpa)}2ZntBu2] (TMEDA is N,N,N′,N′-tetramethylethylenediamine, dpa is 2,2′-dipyridylamide). Here we find altering the Lewis donor or alkali metal within the metalloligand dictates the reaction outcome, exhibiting a strong influence on alkylation yields and reaction selectivity. Varying the former led to the synthesis of three novel complexes, [(PMDETA)Na(dpa)]2, [(TMDAE)Na(dpa)]2, and [(H6-TREN)Na(dpa)], characterised through combined structural, spectroscopic and theoretical studies [where PMDETA is N,N,N′,N′′,N′′-pentamethyldiethylenetriamine, TMDAE is N,N,N′,N′-tetramethyldiaminoethylether and H6-TREN is N′,N′-bis(2-aminoethyl)ethane-1,2-diamine]. Each new sodium amide can function as a metalloligand to generate a co-complex with tBu2Zn. Reacting these new co-complexes with benzophenone proved solvent dependent with yields in THF much lower than those in hexane. Most interestingly, sub-stoichiometric amounts of the metalloligands [(TMEDA)Na(dpa)]2and [(PMEDTA)Na(dpa)]2with 1 : 1, tBu2Zn-benzophenone mixtures produced good yields of the challenging 1,6-tert-butyl addition product in hexane (52% and 53% respectively). Although exchanging Na for Li gave similar reaction yields, the regioselectivity was significantly compromised; whereas the K system was completely unreactive. Replacing tBu2Zn with (Me3SiCH2)2Zn shut down the alkylation of benzophenone; in contrast, tBuLi generates only the reduction product, benzhydrol. Zincation of the parent amine dpa(H) generated the crystalline product [Zn(dpa)2], as structurally elucidated through X-ray crystallography and theoretical calculations. Although the reaction mechanism for the alkylation of benzophenone remains unclear, incorporation of the radical scavenger TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl radical) into the reaction system completely inhibits benzophenone alkylation.

Original languageEnglish
Pages (from-to)14409-14423
Number of pages15
JournalDalton Transactions
Volume43
Issue number38
Early online date18 Jun 2014
DOIs
Publication statusPublished - 14 Oct 2014

Keywords

  • sodium amide
  • alkali metal dipyridylamides
  • benzophenone alkylation

Fingerprint

Dive into the research topics of 'Donor-activated alkali metal dipyridylamides: co-complexation reactions with zinc alkyls and reactivity studies with benzophenone'. Together they form a unique fingerprint.

Cite this