Docking, triggering, and biological activity of dynemicin A in DNA: a computational study

C.T. Tuttle, E. Kraka, D. Cremer

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)

Abstract

The triggering and biological activity of the naturally occurring enediyne dynemicin A (1) was investigated, both inside and outside the minor groove of the duplex 10-mer B-DNA sequence d(CTACTACTGG)·d(CCAGTAGTAG), using density functional theory (B3LYP with the 3-21G and 6-31G(d) basis set), BD(T)/cc-pVDZ (Brueckner doubles with a perturbative treatment of triple excitations), and the ONIOM approach. Enediyne 1 is triggered by NADPH in a strongly exothermic reaction (−88 kcal/mol), which involves a number of intermediate steps. Untriggered 1 has a high barrier for the Bergman cyclization (52 kcal/mol) that is lowered after triggering to 16.7 kcal/mol due to an epoxide opening and the accompanying strain relief. The Bergman reaction of triggered 1 is slightly exothermic by 2.8 kcal/mol. The singlet biradical formed in this reaction is kinetically stable (activation enthalpies of 19.5 and 21.8 kcal/mol for retro-Bergman reactions) and is as reactive as para-benzyne. The activity-relevant docking mode is an edge-on insertion into the minor groove, whereas the intercalation between base pairs, although leading to larger binding energies, excludes a triggering of 1 and the development of its biological activity. Therefore, an insertion−intercalation model is developed, which can explain all known experimental observations made for 1. On the basis of the insertion−intercalation model it is explained why large intercalation energies suppress the biological activity of dynemicin and why double-strand scission can be achieved only in a two-step mechanism that involves two enediyne molecules, explaining thus the high ratio of single-strand to double-strand scission observed for 1.
Original languageEnglish
Pages (from-to)9469-9484
Number of pages16
JournalJournal of American Chemical Society
Volume127
DOIs
Publication statusPublished - 2005

Keywords

  • DNA
  • biological activity
  • dynemicin A

Fingerprint

Dive into the research topics of 'Docking, triggering, and biological activity of dynemicin A in DNA: a computational study'. Together they form a unique fingerprint.

Cite this