Discovery of Novel Antibacterial and Anti-Tubercular Compounds Using Chemical Genetics and Computational Approach Targeted at Phospholipid Biosynthesis

Research output: ThesisDoctoral Thesis

Abstract

Bacterial membranes undergo dynamic rearrangements during cell division with lateral heterogeneity in phospholipid distribution. An understanding of the synthesis of the cell membrane can provide a basis for the rational design of new antibacterial compounds which will ultimately be developed towards potential new antibiotics. Mounting evidence is implicating the importance of phospholipid in the viability of mycobacteria. The genetically tractable and related organism, Streptomyces coelicolor represents an ideal model for analogous studies on Mycobacteria tuberculosis for the purpose of designing novel classes of anti-tuberculosis drugs targeting the phospholipid biosynthesis pathways.
Genetic and biochemical studies carried out on phosphatidylserine synthase (Pss) and phosphatidylserine decarboxylase (Psd) demonstrated the essentiality of these membrane proteins in S. coelicolor. Alteration of pss expression affects the overall growth and morphology of S. coelicolor (i.e. hyphal growth, branching, septation and sporulation) therefore verified the potential of these proteins as drug targets. Although, the early stage ―hit identification‖ approach using a modest collection of compounds was unsuccessful, further screening of relevant compounds should continue. Structural modifications should be carried out on some of the initial compounds which were devoid of antibacterial activity in order to address the possible pharmacodynamic issues. Protein X-ray crystallography or saturation transfer difference - nuclear magnetic resonance (STD-NMR) spectroscopy of these proteins should also be considered in the event of further futile attempts.
LanguageEnglish
Awarding Institution
  • University Of Strathclyde
Supervisors/Advisors
  • Herron, Paul, Supervisor
  • Coxon, Geoffrey, Supervisor
Publication statusPublished - 27 Nov 2012

Fingerprint

Streptomyces coelicolor
Phospholipids
CDPdiacylglycerol-Serine O-Phosphatidyltransferase
Proteins
X Ray Crystallography
Protein S
Drug Delivery Systems
Mycobacterium
Growth
Mycobacterium tuberculosis
Cell Division
Molecular Biology
Membrane Proteins
Tuberculosis
Magnetic Resonance Spectroscopy
Cell Membrane
Anti-Bacterial Agents
Membranes
Pharmaceutical Preparations
phosphatidylserine decarboxylase

Cite this

@phdthesis{40a61980bb3249bf948dfe458c7a79df,
title = "Discovery of Novel Antibacterial and Anti-Tubercular Compounds Using Chemical Genetics and Computational Approach Targeted at Phospholipid Biosynthesis",
abstract = "Bacterial membranes undergo dynamic rearrangements during cell division with lateral heterogeneity in phospholipid distribution. An understanding of the synthesis of the cell membrane can provide a basis for the rational design of new antibacterial compounds which will ultimately be developed towards potential new antibiotics. Mounting evidence is implicating the importance of phospholipid in the viability of mycobacteria. The genetically tractable and related organism, Streptomyces coelicolor represents an ideal model for analogous studies on Mycobacteria tuberculosis for the purpose of designing novel classes of anti-tuberculosis drugs targeting the phospholipid biosynthesis pathways.Genetic and biochemical studies carried out on phosphatidylserine synthase (Pss) and phosphatidylserine decarboxylase (Psd) demonstrated the essentiality of these membrane proteins in S. coelicolor. Alteration of pss expression affects the overall growth and morphology of S. coelicolor (i.e. hyphal growth, branching, septation and sporulation) therefore verified the potential of these proteins as drug targets. Although, the early stage ―hit identification‖ approach using a modest collection of compounds was unsuccessful, further screening of relevant compounds should continue. Structural modifications should be carried out on some of the initial compounds which were devoid of antibacterial activity in order to address the possible pharmacodynamic issues. Protein X-ray crystallography or saturation transfer difference - nuclear magnetic resonance (STD-NMR) spectroscopy of these proteins should also be considered in the event of further futile attempts.",
author = "John Tiong",
year = "2012",
month = "11",
day = "27",
language = "English",
school = "University Of Strathclyde",

}

TY - THES

T1 - Discovery of Novel Antibacterial and Anti-Tubercular Compounds Using Chemical Genetics and Computational Approach Targeted at Phospholipid Biosynthesis

AU - Tiong, John

PY - 2012/11/27

Y1 - 2012/11/27

N2 - Bacterial membranes undergo dynamic rearrangements during cell division with lateral heterogeneity in phospholipid distribution. An understanding of the synthesis of the cell membrane can provide a basis for the rational design of new antibacterial compounds which will ultimately be developed towards potential new antibiotics. Mounting evidence is implicating the importance of phospholipid in the viability of mycobacteria. The genetically tractable and related organism, Streptomyces coelicolor represents an ideal model for analogous studies on Mycobacteria tuberculosis for the purpose of designing novel classes of anti-tuberculosis drugs targeting the phospholipid biosynthesis pathways.Genetic and biochemical studies carried out on phosphatidylserine synthase (Pss) and phosphatidylserine decarboxylase (Psd) demonstrated the essentiality of these membrane proteins in S. coelicolor. Alteration of pss expression affects the overall growth and morphology of S. coelicolor (i.e. hyphal growth, branching, septation and sporulation) therefore verified the potential of these proteins as drug targets. Although, the early stage ―hit identification‖ approach using a modest collection of compounds was unsuccessful, further screening of relevant compounds should continue. Structural modifications should be carried out on some of the initial compounds which were devoid of antibacterial activity in order to address the possible pharmacodynamic issues. Protein X-ray crystallography or saturation transfer difference - nuclear magnetic resonance (STD-NMR) spectroscopy of these proteins should also be considered in the event of further futile attempts.

AB - Bacterial membranes undergo dynamic rearrangements during cell division with lateral heterogeneity in phospholipid distribution. An understanding of the synthesis of the cell membrane can provide a basis for the rational design of new antibacterial compounds which will ultimately be developed towards potential new antibiotics. Mounting evidence is implicating the importance of phospholipid in the viability of mycobacteria. The genetically tractable and related organism, Streptomyces coelicolor represents an ideal model for analogous studies on Mycobacteria tuberculosis for the purpose of designing novel classes of anti-tuberculosis drugs targeting the phospholipid biosynthesis pathways.Genetic and biochemical studies carried out on phosphatidylserine synthase (Pss) and phosphatidylserine decarboxylase (Psd) demonstrated the essentiality of these membrane proteins in S. coelicolor. Alteration of pss expression affects the overall growth and morphology of S. coelicolor (i.e. hyphal growth, branching, septation and sporulation) therefore verified the potential of these proteins as drug targets. Although, the early stage ―hit identification‖ approach using a modest collection of compounds was unsuccessful, further screening of relevant compounds should continue. Structural modifications should be carried out on some of the initial compounds which were devoid of antibacterial activity in order to address the possible pharmacodynamic issues. Protein X-ray crystallography or saturation transfer difference - nuclear magnetic resonance (STD-NMR) spectroscopy of these proteins should also be considered in the event of further futile attempts.

M3 - Doctoral Thesis

ER -