Abstract
This paper presents a novel approach to the design of Low-Thrust trajectories, based on a first order approximated analytical solution of Gauss planetary equations. This analytical solution is shown to have a better accuracy than a second-order explicit numerical integrator and at a lower computational cost. Hence, it can be employed for the fast propagation of perturbed Keplerian motion when moderate accuracy is required. The analytical solution was integrated in a direct transcription method based on a decomposition of the trajectory into direct finite perturbative elements (DFPET). DFPET were applied to the solution of two-point boundary transfer problems.
Furthermore the paper presents an example of the use of DFPET for the solution of a multiobjective trajectory optimisation problem in which both the total ∆V and transfer time are minimized with respect to departure and arrival dates. Two transfer problems were used as test cases: a direct transfer from Earth to Mars and a spiral from a low Earth orbit to the International Space Station.
Furthermore the paper presents an example of the use of DFPET for the solution of a multiobjective trajectory optimisation problem in which both the total ∆V and transfer time are minimized with respect to departure and arrival dates. Two transfer problems were used as test cases: a direct transfer from Earth to Mars and a spiral from a low Earth orbit to the International Space Station.
Original language | English |
---|---|
Pages (from-to) | 108-120 |
Journal | Acta Astronautica |
Volume | 72 |
Publication status | Published - 1 Mar 2012 |
Keywords
- low-thrust propulsion
- trajectory design
- analytic solutions
- perturbation theory
- multiobjective optimization