TY - JOUR
T1 - Direct relationship between levels of TNF-α expression and endothelial dysfunction in reperfusion injury
AU - Zhang, Cuihua
AU - Wu, Junxi
AU - Xu, Xiangbin
AU - Potter, Barry J.
AU - Gao, Xue
PY - 2010/7/1
Y1 - 2010/7/1
N2 - We previously found that myocardial ischemia/ reperfusion (I/R) initiates expression of tumor necrosis factor-α (TNF) leading to coronary endothelial dysfunction. However, it is not clear whether there is a direct relationship between levels of TNF expression and endothelial dysfunction in reperfusion injury. We studied levels of TNF expression by using different transgenic animals expressing varying amounts of TNF in I/R. We crossed TNF overexpression (TNF++/++) with TNF knockout (TNF-/-) mice; thus we have a heterozygote population of mice with the expression of TNF "in between" the TNF-/- and TNF++/++ mice. Mouse hearts were subjected to 30 min of global ischemia followed by 90 min of reperfusion and their vasoactivity before and after I/R was examined in wild type (WT), TNF-/-, TNF++/++ and TNF heterozygote (TNF -/++, cross between TNF-/- and TNF++/++) mice. In heterozygote TNF-/++ mice with intermediate cardiac-specific expression of TNF, acetyl-choline-induced or flow-induced endothelial-dependent vasodilation following I/R was between TNF++/++ and TNF-/- following I/R. Neutralizing antibodies to TNF administered immediately before the onset of reperfusion-preserved endothelial-dependent dilation following I/R in WT, TNF-/++ and TNF++/++ mice. In WT, TNF -/++ and TNF++/++ mice, I/R-induced endothelial dysfunction was progressively lessened by administration of free-radical scavenger TEMPOL immediately before initiating reperfusion. During I/R, production of superoxide (O2-) was greatest in TNF ++/++ mice as compared to WT, TNF-/++ and TNF -/- mice. Following I/R, arginase mRNA expression was elevated in the WT, substantially elevated in the TNF-/++ and TNF ++/++mice and not affected in the TNF-/- mice. These results suggest that the level of TNF expression determines arginase expression in endothelial cells during myocardial I/R, which is one of the mechanisms by which TNF compromises coronary endothelial function in reperfusion injury.
AB - We previously found that myocardial ischemia/ reperfusion (I/R) initiates expression of tumor necrosis factor-α (TNF) leading to coronary endothelial dysfunction. However, it is not clear whether there is a direct relationship between levels of TNF expression and endothelial dysfunction in reperfusion injury. We studied levels of TNF expression by using different transgenic animals expressing varying amounts of TNF in I/R. We crossed TNF overexpression (TNF++/++) with TNF knockout (TNF-/-) mice; thus we have a heterozygote population of mice with the expression of TNF "in between" the TNF-/- and TNF++/++ mice. Mouse hearts were subjected to 30 min of global ischemia followed by 90 min of reperfusion and their vasoactivity before and after I/R was examined in wild type (WT), TNF-/-, TNF++/++ and TNF heterozygote (TNF -/++, cross between TNF-/- and TNF++/++) mice. In heterozygote TNF-/++ mice with intermediate cardiac-specific expression of TNF, acetyl-choline-induced or flow-induced endothelial-dependent vasodilation following I/R was between TNF++/++ and TNF-/- following I/R. Neutralizing antibodies to TNF administered immediately before the onset of reperfusion-preserved endothelial-dependent dilation following I/R in WT, TNF-/++ and TNF++/++ mice. In WT, TNF -/++ and TNF++/++ mice, I/R-induced endothelial dysfunction was progressively lessened by administration of free-radical scavenger TEMPOL immediately before initiating reperfusion. During I/R, production of superoxide (O2-) was greatest in TNF ++/++ mice as compared to WT, TNF-/++ and TNF -/- mice. Following I/R, arginase mRNA expression was elevated in the WT, substantially elevated in the TNF-/++ and TNF ++/++mice and not affected in the TNF-/- mice. These results suggest that the level of TNF expression determines arginase expression in endothelial cells during myocardial I/R, which is one of the mechanisms by which TNF compromises coronary endothelial function in reperfusion injury.
KW - coronary artery disease
KW - ischemia
KW - microcirculation
KW - NO
KW - vasodilation
UR - http://www.scopus.com/inward/record.url?scp=77953120981&partnerID=8YFLogxK
U2 - 10.1007/s00395-010-0083-6
DO - 10.1007/s00395-010-0083-6
M3 - Article
C2 - 20091314
AN - SCOPUS:77953120981
SN - 0300-8428
VL - 105
SP - 453
EP - 464
JO - Basic Research in Cardiology
JF - Basic Research in Cardiology
IS - 4
ER -