Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

S. Vespucci, A. Winkelmann, G. Naresh-Kumar, K. P. Mingard, D. Maneuski, P. R. Edwards, A. P. Day, V. O'Shea, C. Trager-Cowan

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.
LanguageEnglish
Article number205301
Number of pages9
JournalPhysical Review B (Condensed Matter)
Volume92
Issue number20
Early online date6 Nov 2015
DOIs
Publication statusPublished - 15 Nov 2015

Fingerprint

Electron diffraction
Diffraction patterns
diffraction patterns
electron energy
Imaging techniques
Electrons
electrons
diffraction
acquisition
Detectors
Diamond
Digital cameras
Silicon
Phosphors
digital cameras
Contrast Media
detectors
Electron beams
Diamonds
Photons

Keywords

  • electron backscatter diffraction patterns
  • EBSPs
  • electron detection
  • energy filtering

Cite this

@article{4c6032fb54a84568b1b7ce9b3d0ae5bf,
title = "Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns",
abstract = "Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.",
keywords = "electron backscatter diffraction patterns, EBSPs, electron detection, energy filtering",
author = "S. Vespucci and A. Winkelmann and G. Naresh-Kumar and Mingard, {K. P.} and D. Maneuski and Edwards, {P. R.} and Day, {A. P.} and V. O'Shea and C. Trager-Cowan",
year = "2015",
month = "11",
day = "15",
doi = "10.1103/PhysRevB.92.205301",
language = "English",
volume = "92",
journal = "Physical Review B (Condensed Matter)",
issn = "0163-1829",
number = "20",

}

Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns. / Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

In: Physical Review B (Condensed Matter), Vol. 92, No. 20, 205301, 15.11.2015.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

AU - Vespucci, S.

AU - Winkelmann, A.

AU - Naresh-Kumar, G.

AU - Mingard, K. P.

AU - Maneuski, D.

AU - Edwards, P. R.

AU - Day, A. P.

AU - O'Shea, V.

AU - Trager-Cowan, C.

PY - 2015/11/15

Y1 - 2015/11/15

N2 - Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.

AB - Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.

KW - electron backscatter diffraction patterns

KW - EBSPs

KW - electron detection

KW - energy filtering

UR - http://journals.aps.org/prb/

U2 - 10.1103/PhysRevB.92.205301

DO - 10.1103/PhysRevB.92.205301

M3 - Article

VL - 92

JO - Physical Review B (Condensed Matter)

T2 - Physical Review B (Condensed Matter)

JF - Physical Review B (Condensed Matter)

SN - 0163-1829

IS - 20

M1 - 205301

ER -