Development of bioelectrical impedance derived indices of fat and fat-free mass for assessment of nutritional status in childhood

C.M. Wright, JH McColl, John J Reilly, A. Sherriff, AR Ness

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

To develop a method of manipulating bioelectrical impedance (BIA) that gives indices of lean and fat adjusted for body size, using a large normative cohort of children. (2) To assess the discriminant validity of the method in a group of children likely to have abnormal body composition. There were two prospective cohort studies. 7576 children measured aged between 7.25 and 8.25 (mean 7.5) (s.d.=0.2) years; proof of concept study: 29 children with either major neurodisability or receiving artificial feeding, or both, mean age 7.6 (s.d.=2) years. Leg-to-leg (Z T) and arm-to-leg (Z B) BIA, weight and height. Total body water (TBW) was estimated from the resistance index (RI=height2/Z), and fat-free mass was linearly related to TBW. Fat mass was obtained by subtracting fat-free mass from total weight. Fat-free mass was log-transformed and the reciprocal transform was taken for fat mass to satisfy parametric model assumptions. Lean and fat mass were then adjusted for height and age using multiple linear regression models. The resulting standardized residuals gave the lean index and fat index, respectively. In the normative cohort, the lean index was higher and fat index lower in boys. The lean index rose steeply to the middle of the normal range of body mass index (BMI) and then slowly for higher BMI values, whereas the fat index rose linearly through and above the normal range. In the proof of concept study, the children as a group had low lean indices (mean (s.d.) −1.5 (1.7)) with average fat indices (+0.21 (2.0)) despite relatively low BMI standard deviation scores (−0.60 (2.3)), but for any given BMI, individual children had extremely wide ranges of fat indices. The lean index proved more stable and repeatable than BMI. This clinical method of handling BIA reveals important variations in nutritional status that would not be detected using anthropometry alone. BIA used in this way would allow more accurate assessment of energy sufficiency in children with neurodisability and may provide a more valid identification of children at risk of underweight or obesity in field and clinical settings.

Original languageEnglish
Pages (from-to)210-217
Number of pages8
JournalEuropean Journal of Clinical Nutrition
Volume62
Issue number2
DOIs
Publication statusPublished - 2008

Fingerprint

Nutritional Status
Electric Impedance
Fats
Body Mass Index
Leg
Body Water
Linear Models
Reference Values
Weights and Measures
Anthropometry
Nutritional Support
Thinness
Body Size
Body Composition
Arm
Cohort Studies
Obesity
Prospective Studies

Keywords

  • childhood obesity
  • exercise
  • bioelectrical impedance
  • fat

Cite this

@article{359647d0f792470d8f4c246002290da4,
title = "Development of bioelectrical impedance derived indices of fat and fat-free mass for assessment of nutritional status in childhood",
abstract = "To develop a method of manipulating bioelectrical impedance (BIA) that gives indices of lean and fat adjusted for body size, using a large normative cohort of children. (2) To assess the discriminant validity of the method in a group of children likely to have abnormal body composition. There were two prospective cohort studies. 7576 children measured aged between 7.25 and 8.25 (mean 7.5) (s.d.=0.2) years; proof of concept study: 29 children with either major neurodisability or receiving artificial feeding, or both, mean age 7.6 (s.d.=2) years. Leg-to-leg (Z T) and arm-to-leg (Z B) BIA, weight and height. Total body water (TBW) was estimated from the resistance index (RI=height2/Z), and fat-free mass was linearly related to TBW. Fat mass was obtained by subtracting fat-free mass from total weight. Fat-free mass was log-transformed and the reciprocal transform was taken for fat mass to satisfy parametric model assumptions. Lean and fat mass were then adjusted for height and age using multiple linear regression models. The resulting standardized residuals gave the lean index and fat index, respectively. In the normative cohort, the lean index was higher and fat index lower in boys. The lean index rose steeply to the middle of the normal range of body mass index (BMI) and then slowly for higher BMI values, whereas the fat index rose linearly through and above the normal range. In the proof of concept study, the children as a group had low lean indices (mean (s.d.) −1.5 (1.7)) with average fat indices (+0.21 (2.0)) despite relatively low BMI standard deviation scores (−0.60 (2.3)), but for any given BMI, individual children had extremely wide ranges of fat indices. The lean index proved more stable and repeatable than BMI. This clinical method of handling BIA reveals important variations in nutritional status that would not be detected using anthropometry alone. BIA used in this way would allow more accurate assessment of energy sufficiency in children with neurodisability and may provide a more valid identification of children at risk of underweight or obesity in field and clinical settings.",
keywords = "childhood obesity, exercise, bioelectrical impedance , fat",
author = "C.M. Wright and JH McColl and Reilly, {John J} and A. Sherriff and AR Ness",
year = "2008",
doi = "10.1038/sj.ejcn.1602714",
language = "English",
volume = "62",
pages = "210--217",
journal = "European Journal of Clinical Nutrition",
issn = "0954-3007",
number = "2",

}

Development of bioelectrical impedance derived indices of fat and fat-free mass for assessment of nutritional status in childhood. / Wright, C.M.; McColl, JH; Reilly, John J; Sherriff, A.; Ness, AR.

In: European Journal of Clinical Nutrition, Vol. 62, No. 2, 2008, p. 210-217.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Development of bioelectrical impedance derived indices of fat and fat-free mass for assessment of nutritional status in childhood

AU - Wright, C.M.

AU - McColl, JH

AU - Reilly, John J

AU - Sherriff, A.

AU - Ness, AR

PY - 2008

Y1 - 2008

N2 - To develop a method of manipulating bioelectrical impedance (BIA) that gives indices of lean and fat adjusted for body size, using a large normative cohort of children. (2) To assess the discriminant validity of the method in a group of children likely to have abnormal body composition. There were two prospective cohort studies. 7576 children measured aged between 7.25 and 8.25 (mean 7.5) (s.d.=0.2) years; proof of concept study: 29 children with either major neurodisability or receiving artificial feeding, or both, mean age 7.6 (s.d.=2) years. Leg-to-leg (Z T) and arm-to-leg (Z B) BIA, weight and height. Total body water (TBW) was estimated from the resistance index (RI=height2/Z), and fat-free mass was linearly related to TBW. Fat mass was obtained by subtracting fat-free mass from total weight. Fat-free mass was log-transformed and the reciprocal transform was taken for fat mass to satisfy parametric model assumptions. Lean and fat mass were then adjusted for height and age using multiple linear regression models. The resulting standardized residuals gave the lean index and fat index, respectively. In the normative cohort, the lean index was higher and fat index lower in boys. The lean index rose steeply to the middle of the normal range of body mass index (BMI) and then slowly for higher BMI values, whereas the fat index rose linearly through and above the normal range. In the proof of concept study, the children as a group had low lean indices (mean (s.d.) −1.5 (1.7)) with average fat indices (+0.21 (2.0)) despite relatively low BMI standard deviation scores (−0.60 (2.3)), but for any given BMI, individual children had extremely wide ranges of fat indices. The lean index proved more stable and repeatable than BMI. This clinical method of handling BIA reveals important variations in nutritional status that would not be detected using anthropometry alone. BIA used in this way would allow more accurate assessment of energy sufficiency in children with neurodisability and may provide a more valid identification of children at risk of underweight or obesity in field and clinical settings.

AB - To develop a method of manipulating bioelectrical impedance (BIA) that gives indices of lean and fat adjusted for body size, using a large normative cohort of children. (2) To assess the discriminant validity of the method in a group of children likely to have abnormal body composition. There were two prospective cohort studies. 7576 children measured aged between 7.25 and 8.25 (mean 7.5) (s.d.=0.2) years; proof of concept study: 29 children with either major neurodisability or receiving artificial feeding, or both, mean age 7.6 (s.d.=2) years. Leg-to-leg (Z T) and arm-to-leg (Z B) BIA, weight and height. Total body water (TBW) was estimated from the resistance index (RI=height2/Z), and fat-free mass was linearly related to TBW. Fat mass was obtained by subtracting fat-free mass from total weight. Fat-free mass was log-transformed and the reciprocal transform was taken for fat mass to satisfy parametric model assumptions. Lean and fat mass were then adjusted for height and age using multiple linear regression models. The resulting standardized residuals gave the lean index and fat index, respectively. In the normative cohort, the lean index was higher and fat index lower in boys. The lean index rose steeply to the middle of the normal range of body mass index (BMI) and then slowly for higher BMI values, whereas the fat index rose linearly through and above the normal range. In the proof of concept study, the children as a group had low lean indices (mean (s.d.) −1.5 (1.7)) with average fat indices (+0.21 (2.0)) despite relatively low BMI standard deviation scores (−0.60 (2.3)), but for any given BMI, individual children had extremely wide ranges of fat indices. The lean index proved more stable and repeatable than BMI. This clinical method of handling BIA reveals important variations in nutritional status that would not be detected using anthropometry alone. BIA used in this way would allow more accurate assessment of energy sufficiency in children with neurodisability and may provide a more valid identification of children at risk of underweight or obesity in field and clinical settings.

KW - childhood obesity

KW - exercise

KW - bioelectrical impedance

KW - fat

UR - http://www.nature.com/ejcn/journal/v62/n2/abs/1602714a.html

U2 - 10.1038/sj.ejcn.1602714

DO - 10.1038/sj.ejcn.1602714

M3 - Article

VL - 62

SP - 210

EP - 217

JO - European Journal of Clinical Nutrition

JF - European Journal of Clinical Nutrition

SN - 0954-3007

IS - 2

ER -