Development of a novel three degrees-of-freedom rotary vibration-assisted micropolishing system based on piezoelectric actuation

Yan Gu, Xiuyuan Chen, Faxiang Lu, Jieqiong Lin, Allen Yi, Jie Feng, Yang Sun

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
9 Downloads (Pure)

Abstract

The limited degrees of freedom (DOF) and movement form of the compliant vibration-assisted processing device are inherent constraints of the polishing technique. In this paper, a concept of a 3-DOF rotary vibration-assisted micropolishing system (3D RVMS) is proposed and demonstrated. The 3-DOF means the proposed vibration-assisted polishing device (VPD) is driven by three piezo-electric (PZT) actuators. Compared with the current vibration-assisted polishing technology which generates a trajectory with orthogonal actuators or parallel actuators, a novel 3-DOF piezoelectrically actuated VPD was designed to enable the workpiece to move along the rotational direction. Meanwhile, the proposed VPD can deliver large processing stoke in mrad scale and can be operated at a flexible non-resonant mode. A matrix-based compliance modeling method was adopted for calculating the compliance and amplification ratio of the VPD. Additionally, the dynamic and static properties of the developed VPD were verified using finite element analysis. Then, the VPD was manufactured and experimentally tested to investigate its practical performance. Finally, various polished surfaces which used silicon carbide (SiC) ceramic as workpiece material were uniformly generated by the high-performance 3D RVMS. Compared with a nonvibration polishing system, surface roughness was clearly improved by introducing rotary vibration-assisted processing. Both the analysis and experiments verified the effectiveness of the present 3D RVMS for micro-machining surfaces.
Original languageEnglish
Article number502
Number of pages19
JournalMicromachines
Volume10
Issue number8
DOIs
Publication statusPublished - 29 Jul 2019

Keywords

  • nonresonant micropolishing
  • vibration-assisted processing device (VPD)
  • silicon carbide (SiC) ceramic
  • finite element analyses
  • piezoelectric actuation

Fingerprint

Dive into the research topics of 'Development of a novel three degrees-of-freedom rotary vibration-assisted micropolishing system based on piezoelectric actuation'. Together they form a unique fingerprint.

Cite this