Abstract
This study presents a detailed DC-side fault analysis considering inductive termination of lines within a high-voltage multi-terminal direct current (MTDC) grid. The analysis aims to provide design guidelines for DC-side inductors, taking into account important aspects of protection such as the required speed of operation of relays and the performance characteristics of current interruption devices (i.e. of DC circuit breakers). Moreover, the impact of current limiting inductors on the fault signatures is investigated. In particular, it has been found that DC-side inductors not only limit the fault current level, but also the resulting signatures in voltage and current, can assist to enhance the speed of operation, stability and selectivity of protective functions for DC-side faults. The analysis has been extended to include the impact of inductive termination on fast transient phenomena known as travelling waves. Specifically, DC-side inductors can form a significant reflection boundary for the generated travelling waves. A deeper insight into the faults has been achieved by utilising wavelet transform.
Original language | English |
---|---|
Pages (from-to) | 1-6 |
Number of pages | 6 |
Journal | Journal of Engineering |
DOIs | |
Publication status | Published - 18 Jul 2018 |
Event | 14th International Conference on Developments in Power System Protection: The 14th International Conference on Developments in Power System Protection (DPSP), Belfast, UK - Europa Hotel, Belfast, United Kingdom Duration: 12 Mar 2018 → 15 Mar 2018 https://events.theiet.org/dpsp/index.cfm?utm_source=redirect&utm_medium=any&utm_campaign=dpsp |
Keywords
- DC-line
- multi-terminal direct current
- HVDC