TY - JOUR
T1 - Delineation of the functional site of alpha-dendrotoxin - the functional topographies of dendrotoxins are different but share a conserved core with those of other kv1 potassium channel-blocking toxins
AU - Gasparini, S.
AU - Danse, J.M.
AU - Lecoq, A.
AU - Pinkasfeld, S.
AU - Zinn-Justin, S.
AU - Young, L.C.
AU - de Medeiros, C.C.L.
AU - Rowan, E.G.
N1 - Strathprints' policy is to record up to 8 authors per publication, plus any additional authors based at the University of Strathclyde. More authors may be listed on the official publication than appear in the Strathprints' record.
PY - 1998/9/25
Y1 - 1998/9/25
N2 - We identified the residues that are important for the binding of α-dendrotoxin (αDTX) to Kv1 potassium channels on rat brain synaptosomal membranes, using a mutational approach based on site-directed mutagenesis and chemical synthesis. Twenty-six of its 59 residues were individually substituted by alanine. Substitutions of Lys5 and Leu9 decreased affinity more than 1000-fold, and substitutions of Arg3, Arg4, Leu6, and Ile8 by 5-30-fold. Substitution of Lys5 by norleucine or ornithine also greatly altered the binding properties of αDTX. All of these analogs displayed similar circular dichroism spectra as compared with the wild-type αDTX, indicating that none of these substitutions affect the overall conformation of the toxin. Substitutions of Ser38 and Arg46 also reduced the affinity of the toxin but, in addition, modified its dichroic properties, suggesting that these two residues play a structural role. The other residues were excluded from the recognition site because their substitutions caused no significant affinity change. Thus, the functional site of αDTX includes six major binding residues, all located in its N-terminal region, with Lys5 and Leu9 being the most important. Comparison of the functional site of αDTX with that of DTX-K, another dendrotoxin (Smith, L. A., Reid, P. F., Wang, F. C., Parcej, D. N., Schmidt, J. J., Olson, M. A., and Dolly, J. O. (1997)Biochemistry 36, 7690-7696), reveals that they only share the predominant lysine and probably a leucine residue; the additional functional residues differ from one toxin to the other. Comparison of the functional site of αDTX with those of structurally unrelated potassium channel-blocking toxins from venomous invertebrates revealed the common presence of a protruding key lysine with a close important hydrophobic residue (Leu, Tyr, or Phe) and few additional residues. Therefore, irrespective of their phylogenetic origin, all of these toxins may have undergone a functional convergence. The functional site of αDTX is topographically unrelated to the 'antiprotease site' of the structurally analogous bovine pancreatic trypsin inhibitor.
AB - We identified the residues that are important for the binding of α-dendrotoxin (αDTX) to Kv1 potassium channels on rat brain synaptosomal membranes, using a mutational approach based on site-directed mutagenesis and chemical synthesis. Twenty-six of its 59 residues were individually substituted by alanine. Substitutions of Lys5 and Leu9 decreased affinity more than 1000-fold, and substitutions of Arg3, Arg4, Leu6, and Ile8 by 5-30-fold. Substitution of Lys5 by norleucine or ornithine also greatly altered the binding properties of αDTX. All of these analogs displayed similar circular dichroism spectra as compared with the wild-type αDTX, indicating that none of these substitutions affect the overall conformation of the toxin. Substitutions of Ser38 and Arg46 also reduced the affinity of the toxin but, in addition, modified its dichroic properties, suggesting that these two residues play a structural role. The other residues were excluded from the recognition site because their substitutions caused no significant affinity change. Thus, the functional site of αDTX includes six major binding residues, all located in its N-terminal region, with Lys5 and Leu9 being the most important. Comparison of the functional site of αDTX with that of DTX-K, another dendrotoxin (Smith, L. A., Reid, P. F., Wang, F. C., Parcej, D. N., Schmidt, J. J., Olson, M. A., and Dolly, J. O. (1997)Biochemistry 36, 7690-7696), reveals that they only share the predominant lysine and probably a leucine residue; the additional functional residues differ from one toxin to the other. Comparison of the functional site of αDTX with those of structurally unrelated potassium channel-blocking toxins from venomous invertebrates revealed the common presence of a protruding key lysine with a close important hydrophobic residue (Leu, Tyr, or Phe) and few additional residues. Therefore, irrespective of their phylogenetic origin, all of these toxins may have undergone a functional convergence. The functional site of αDTX is topographically unrelated to the 'antiprotease site' of the structurally analogous bovine pancreatic trypsin inhibitor.
KW - delineation
KW - alpha-dendrotoxin
KW - kv1 potassium
KW - toxins
UR - http://dx.doi.org/10.1074/jbc.273.39.25393
U2 - 10.1074/jbc.273.39.25393
DO - 10.1074/jbc.273.39.25393
M3 - Article
SN - 0021-9258
VL - 273
SP - 25393
EP - 25403
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 39
ER -