Degradation mechanism of diethylene glycol units in a terephthalate polymer

Hélène A. Lecomte, John J. Liggat

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Diethylene glycol (DEG) is incorporated into poly(ethylene terephthalate) (PET) during industrial synthesis in order to control crystallisation kinetics. DEG is known to be a weak point in the thermal degradation of PET, which is problematic during the recycling of the polymer. Studies on the thermal decomposition of the model polymer poly(diethylene glycol terephthalate) (PDEGT) have been performed using TG, DSC, TVA and spectroscopic techniques. They revealed a degradation behaviour with two distinct steps, where the first step initiates some 100 K below the degradation temperature of PET. The second step is similar to the behaviour of PET. Based on our observations, a new degradation mechanism specific to DEG units is proposed, where random ether groups along the backbone can back-bite and form cyclic oligomers. These cyclic species, containing ether moieties, are evolved at 245 °C and constitute the first of the two steps of degradation observed for PDEGT.
Original languageEnglish
Pages (from-to)681-689
Number of pages8
JournalPolymer Degradation and Stability
Volume91
Issue number4
DOIs
Publication statusPublished - Apr 2006

Keywords

  • poly(ethylene terephthalate)
  • poly(diethylene glycol terephthalate)
  • thermal analysis
  • thermal degradation

Fingerprint Dive into the research topics of 'Degradation mechanism of diethylene glycol units in a terephthalate polymer'. Together they form a unique fingerprint.

  • Cite this