TY - JOUR
T1 - Degradation and mineralization of 4-tert-butylphenol in water using Fe-doped TiO2 catalysts
AU - Makhatova, Ardak
AU - Ulykbanova, Gaukhar
AU - Sadyk, Shynggys
AU - Sarsenbay, Kali
AU - Atabaev, Timur Sh.
AU - Inglezakis, Vassilis J.
AU - Poulopoulos, Stavros G.
PY - 2019/12/17
Y1 - 2019/12/17
N2 - In the present work, the photocatalytic degradation and mineralization of 4-tert-butylphenol in water was studied using Fe-doped TiO2 nanoparticles under UV light irradiation. Fe-doped TiO2 catalysts (0.5, 1, 2 and 4 wt.%) were prepared using wet impregnation and characterized via SEM/EDS, XRD, XRF and TEM, while their photocatalytic activity and stability was attended via total organic carbon, 4-tert-butyl phenol, acetic acid, formic acid and leached iron concentrations measurements. The effect of H2O2 addition was also examined. The 4% Fe/TiO2 demonstrated the highest photocatalytic efficiency in terms of total organic carbon removal (86%). The application of UV/H2O2 resulted in 31% total organic carbon removal and 100% 4-t-butylphenol conversion, however combining Fe/TiO2 catalysts with H2O2 under UV irradiation did not improve the photocatalytic performance. Increasing the content of iron on the catalyst from 0.5 to 4% considerably decreased the intermediates formed and increased the production of carbon dioxide. The photocatalytic degradation of 4-tert-butylphenol followed pseudo-second order kinetics. Leaching of iron was observed mainly in the case of 4% Fe/TiO2, but it was considered negligible taking into account the iron load on catalysts. The electric energy per order was found in the range of 28–147 kWh/m3/order and increased with increasing the iron content of the catalyst.
AB - In the present work, the photocatalytic degradation and mineralization of 4-tert-butylphenol in water was studied using Fe-doped TiO2 nanoparticles under UV light irradiation. Fe-doped TiO2 catalysts (0.5, 1, 2 and 4 wt.%) were prepared using wet impregnation and characterized via SEM/EDS, XRD, XRF and TEM, while their photocatalytic activity and stability was attended via total organic carbon, 4-tert-butyl phenol, acetic acid, formic acid and leached iron concentrations measurements. The effect of H2O2 addition was also examined. The 4% Fe/TiO2 demonstrated the highest photocatalytic efficiency in terms of total organic carbon removal (86%). The application of UV/H2O2 resulted in 31% total organic carbon removal and 100% 4-t-butylphenol conversion, however combining Fe/TiO2 catalysts with H2O2 under UV irradiation did not improve the photocatalytic performance. Increasing the content of iron on the catalyst from 0.5 to 4% considerably decreased the intermediates formed and increased the production of carbon dioxide. The photocatalytic degradation of 4-tert-butylphenol followed pseudo-second order kinetics. Leaching of iron was observed mainly in the case of 4% Fe/TiO2, but it was considered negligible taking into account the iron load on catalysts. The electric energy per order was found in the range of 28–147 kWh/m3/order and increased with increasing the iron content of the catalyst.
KW - photocatalytic degradation
KW - photocatalytic activity
KW - photocatalytic performance
UR - http://www.scopus.com/inward/record.url?scp=85076603218&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-55775-7
DO - 10.1038/s41598-019-55775-7
M3 - Article
C2 - 31848408
AN - SCOPUS:85076603218
VL - 9
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
M1 - 19284
ER -