Deep convolution network based emotion analysis towards mental health care

Zixiang Fei, Erfu Yang, David Day Uei Li, Stephen Butler, Winifred Ijomah, Xia Li, Huiyu Zhou

Research output: Contribution to journalArticlepeer-review

91 Citations (Scopus)
107 Downloads (Pure)


Facial expressions play an important role during communications, allowing information regarding the emotional state of an individual to be conveyed and inferred. Research suggests that automatic facial expression recognition is a promising avenue of enquiry in mental healthcare, as facial expressions can also reflect an individual's mental state. In order to develop user-friendly, low-cost and effective facial expression analysis systems for mental health care, this paper presents a novel deep convolution network based emotion analysis framework to support mental state detection and diagnosis. The proposed system is able to process facial images and interpret the temporal evolution of emotions through a new solution in which deep features are extracted from the Fully Connected Layer 6 of the AlexNet, with a standard Linear Discriminant Analysis Classifier exploited to obtain the final classification outcome. It is tested against 5 benchmarking databases, including JAFFE, KDEF,CK+, and databases with the images obtained ‘in the wild’ such as FER2013 and AffectNet. Compared with the other state-of-the-art methods, we observe that our method has overall higher accuracy of facial expression recognition. Additionally, when compared to the state-of-the-art deep learning algorithms such as Vgg16, GoogleNet, ResNet and AlexNet, the proposed method demonstrated better efficiency and has less device requirements. The experiments presented in this paper demonstrate that the proposed method outperforms the other methods in terms of accuracy and efficiency which suggests it could act as a smart, low-cost, user-friendly cognitive aid to detect, monitor, and diagnose the mental health of a patient through automatic facial expression analysis.

Original languageEnglish
Pages (from-to)212-227
Number of pages16
Early online date16 Jan 2020
Publication statusPublished - 7 May 2020


  • deep convolution network
  • emotion analysis
  • facial expression recognition
  • mental health care


Dive into the research topics of 'Deep convolution network based emotion analysis towards mental health care'. Together they form a unique fingerprint.

Cite this