Data driven model improved by multi-objective optimisation for prediction of building energy loads

Saleh Seyedzadeh, Farzad Pour Rahimian, Stephen Oliver, Ivan Glesk, Bimal Kumar

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Machine learning (ML) has been recognised as a powerful method for modelling
building energy consumption. The capability of ML to provide a fast and accurate prediction of energy loads makes it an ideal tool for decision-making tasks related to sustainable design and retrofit planning. However, the accuracy of these ML models is dependent on the selection of the right hyper-parameters for a specific building dataset. This paper proposes a method for optimising ML models for forecasting both heating and cooling loads. The technique employs multi-objective optimisation with evolutionary algorithms to search the space of possible parameters. The proposed approach not only tunes single model to precisely predict building energy loads but also accelerates the process of model optimisation. The study utilises simulated building energy data generated in EnergyPlus to validate the proposed method, and compares the outcomes with the regular ML tuning procedure (i.e. grid search). The optimised model provides a reliable tool for building designers and engineers to explore a large space of the available building materials and technologies.
Original languageEnglish
Article number103188
Number of pages12
JournalAutomation in Construction
Volume116
Early online date30 Apr 2020
DOIs
Publication statusPublished - 31 Aug 2020

Keywords

  • building energy loads
  • building energy prediction
  • machine Learning
  • model optimisation
  • energy performance

Fingerprint Dive into the research topics of 'Data driven model improved by multi-objective optimisation for prediction of building energy loads'. Together they form a unique fingerprint.

  • Cite this