Dangling and hydrolyzed ligand arms in [Mn3] and [Mn6] coordination assemblies: synthesis, characterization, and functional activity

Krishna Chattopadhyay, Gavin A. Craig, María José Heras Ojea, Moumita Pait, Animesh Kundu, Junseong Lee, Mark Murrie, Antonio Frontera, Debashis Ray

Research output: Contribution to journalArticle

11 Citations (Scopus)
8 Downloads (Pure)


Two flexible, branched, and sterically constrained di- and tripodal side arms around a phenol backbone were utilized in ligands H3L1 and H5L2 to isolate {Mn6} and {Mn3} coordination aggregates. 2,6-Bis{(1-hydroxy-2-methylpropan-2-ylimino)methyl}-4-methylphenol (H3L1) gave trinuclear complex [Mn3(μ-H2L1)2(μ1,3-O2CCH3)4(CH3OH)2](ClO4)2·4CH3OH (1), whereas 2,6-bis[{1-hydroxy-2-(hydroxymethyl)butan-2-ylimino}methyl]-4-methylphenol (H5L2) provided hexanuclear complex [Mn6(μ4-H2L2)2(μ-HL3)2(μ3-OH)2(μ1,3-O2CC2H5)4](ClO4)2·2H2O (2). Binding of acetates and coordination of {H2L1}− provided a linear MnIIIMnIIMnIII arrangement in 1. A MnIII6 fused diadamantane-type assembly was obtained in 2 from propionate bridges, coordination of {H2L2}3–, and in situ generated {HL3}2–. The magnetic characterization of 1 and 2 revealed the properties dominated by intramolecular anti-ferromagnetic exchange interactions, and this was confirmed using density functional theory calculations. Complex 1 exhibited field-induced slow magnetic relaxation at 2 K due to the axial anisotropy of MnIII centers. Both the complexes show effective solvent-dependent catechol oxidation toward 3,5-di-tert-butylcatechol in air. The catechol oxidation abilities are comparable from two complexes of different nuclearity and structure.
Original languageEnglish
Pages (from-to)2639-2652
Number of pages14
JournalInorganic Chemistry
Issue number5
Early online date15 Feb 2017
Publication statusPublished - 6 Mar 2017



  • coordination assembly
  • 2-amino-2-ethyl-propane-1,3-diol
  • 2-amino-2- methylpropan-1-ol
  • imine hydrolysis

Cite this