Projects per year
Abstract
This study investigates the effects of key process parameters of continuous mixing-induced supersaturation on the antisolvent crystallization of lactose using D-optimal Design of Experiments (DoE). Aqueous solutions of lactose were mixed isothermally with antisolvents using a concentric capillary mixer. Process parameters investigated were the choice of antisolvent (acetone or isopropanol), concentration of lactose solution, total mass flow rate, and the ratio of mass flow rates of lactose solution and antisolvent. Using a D-optimal DoE a statistically significant sample set was chosen to explore and quantify the effects of these parameters. The responses measured were the solid state of the lactose crystallized, induction time, solid yield and particle size. Mixtures of α-lactose monohydrate and β-lactose were crystallized under most conditions with β-lactose content increasing with increasing amount of antisolvent. Pure α-lactose monohydrate was crystallized using acetone as the antisolvent, with mass flow ratios near 1:1, and near saturated solutions of lactose. A higher resolution DoE was adopted for acetone and was processed using multivariate methods to obtain a crystallization diagram of lactose. The model was used to create an optimized process to produce α-lactose monohydrate and predicted results agreed well with those obtained experimentally, validating the model. The solid state of lactose, induction time, and solid yield were accurately predicted.
Original language | English |
---|---|
Pages (from-to) | 2611-2621 |
Number of pages | 11 |
Journal | Crystal Growth and Design |
Volume | 17 |
Issue number | 5 |
Early online date | 28 Mar 2017 |
DOIs | |
Publication status | Published - 3 May 2017 |
Keywords
- continuous mixing-induced supersaturation
- antisolvent crystallization
- lactose
- concentric capillary mixer
- D-optimal design of experiments
- induction time
- solid yield
Fingerprint
Dive into the research topics of 'Crystallization diagram for antisolvent crystallization of lactose: using design of experiments to investigate continuous mixing- induced supersaturation'. Together they form a unique fingerprint.Profiles
Projects
- 2 Finished
-
Doctoral Training Centre In Continuous Manufacturing And Crystallisation
Florence, A. (Principal Investigator) & Sefcik, J. (Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/07/12 → 30/06/19
Project: Research - Studentship
-
CMAC - EPSRC Centre for Innovative Manufacturing for Continuous Manufacturing and Crystallisation
Florence, A. (Principal Investigator), Bititci, U. (Co-investigator), Halbert, G. (Co-investigator), Littlejohn, D. (Co-investigator) & Sefcik, J. (Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/10/11 → 31/12/16
Project: Research