Crucial abelian k-power-free words

Amy Glen, Bjarni Halldorsson, Sergey Kitaev

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In 1961, Erdős asked whether or not there exist words of arbitrary length over a fixed finite alphabet that avoid patterns of the form XX' where X' is a permutation of X (called abelian squares). This problem has since been solved in the affirmative in a series of papers from 1968 to 1992. Much less is known in the case of abelian k-th powers, i.e., words of the form X1X2⋯Xk where Xi is a permutation of X1 for 2 ≤i ≤k. In this paper, we consider crucial words for abelian k-th powers, i.e., finite words that avoid abelian k-th powers, but which cannot be extended to the right by any letter of their own alphabets without creating an abelian k-th power. More specifically, we consider the problem of determining the minimal length of a crucial word avoiding abelian k-th powers. This problem has already been solved for abelian squares by Evdokimov and Kitaev (2004), who showed that a minimal crucial word over an n-letter alphabet An = {1,2,…, n} avoiding abelian squares has length 4n-7 for n≥3. Extending this result, we prove that a minimal crucial word over An avoiding abelian cubes has length 9n-13 for n≥5, and it has length 2, 5, 11, and 20 for n=1,2,3, and 4, respectively. Moreover, for n≥4 and k≥2, we give a construction of length k2(n-1)-k-1 of a crucial word over An avoiding abelian k-th powers. This construction gives the minimal length for k=2 and k=3. For k ≥4 and n≥5, we provide a lower bound for the length of crucial words over An avoiding abelian k-th powers.
LanguageEnglish
Pages83-96
Number of pages14
JournalDiscrete Mathematics and Theoretical Computer Science
Volume12
Issue number5
Publication statusPublished - 2010

Fingerprint

Permutation
Regular hexahedron
Lower bound
Series
Arbitrary
Form

Keywords

  • abelian squares
  • abelian k-th power
  • crucial word

Cite this

Glen, Amy ; Halldorsson, Bjarni ; Kitaev, Sergey. / Crucial abelian k-power-free words. In: Discrete Mathematics and Theoretical Computer Science. 2010 ; Vol. 12, No. 5. pp. 83-96.
@article{885bc4b7b75b4da3a293bd721b331861,
title = "Crucial abelian k-power-free words",
abstract = "In 1961, Erdős asked whether or not there exist words of arbitrary length over a fixed finite alphabet that avoid patterns of the form XX' where X' is a permutation of X (called abelian squares). This problem has since been solved in the affirmative in a series of papers from 1968 to 1992. Much less is known in the case of abelian k-th powers, i.e., words of the form X1X2⋯Xk where Xi is a permutation of X1 for 2 ≤i ≤k. In this paper, we consider crucial words for abelian k-th powers, i.e., finite words that avoid abelian k-th powers, but which cannot be extended to the right by any letter of their own alphabets without creating an abelian k-th power. More specifically, we consider the problem of determining the minimal length of a crucial word avoiding abelian k-th powers. This problem has already been solved for abelian squares by Evdokimov and Kitaev (2004), who showed that a minimal crucial word over an n-letter alphabet An = {1,2,…, n} avoiding abelian squares has length 4n-7 for n≥3. Extending this result, we prove that a minimal crucial word over An avoiding abelian cubes has length 9n-13 for n≥5, and it has length 2, 5, 11, and 20 for n=1,2,3, and 4, respectively. Moreover, for n≥4 and k≥2, we give a construction of length k2(n-1)-k-1 of a crucial word over An avoiding abelian k-th powers. This construction gives the minimal length for k=2 and k=3. For k ≥4 and n≥5, we provide a lower bound for the length of crucial words over An avoiding abelian k-th powers.",
keywords = "abelian squares, abelian k-th power, crucial word",
author = "Amy Glen and Bjarni Halldorsson and Sergey Kitaev",
year = "2010",
language = "English",
volume = "12",
pages = "83--96",
journal = "Discrete Mathematics and Theoretical Computer Science",
issn = "1365-8050",
publisher = "Maison de l'informatique et des mathematiques discretes",
number = "5",

}

Crucial abelian k-power-free words. / Glen, Amy; Halldorsson, Bjarni; Kitaev, Sergey.

In: Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 5, 2010, p. 83-96.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Crucial abelian k-power-free words

AU - Glen, Amy

AU - Halldorsson, Bjarni

AU - Kitaev, Sergey

PY - 2010

Y1 - 2010

N2 - In 1961, Erdős asked whether or not there exist words of arbitrary length over a fixed finite alphabet that avoid patterns of the form XX' where X' is a permutation of X (called abelian squares). This problem has since been solved in the affirmative in a series of papers from 1968 to 1992. Much less is known in the case of abelian k-th powers, i.e., words of the form X1X2⋯Xk where Xi is a permutation of X1 for 2 ≤i ≤k. In this paper, we consider crucial words for abelian k-th powers, i.e., finite words that avoid abelian k-th powers, but which cannot be extended to the right by any letter of their own alphabets without creating an abelian k-th power. More specifically, we consider the problem of determining the minimal length of a crucial word avoiding abelian k-th powers. This problem has already been solved for abelian squares by Evdokimov and Kitaev (2004), who showed that a minimal crucial word over an n-letter alphabet An = {1,2,…, n} avoiding abelian squares has length 4n-7 for n≥3. Extending this result, we prove that a minimal crucial word over An avoiding abelian cubes has length 9n-13 for n≥5, and it has length 2, 5, 11, and 20 for n=1,2,3, and 4, respectively. Moreover, for n≥4 and k≥2, we give a construction of length k2(n-1)-k-1 of a crucial word over An avoiding abelian k-th powers. This construction gives the minimal length for k=2 and k=3. For k ≥4 and n≥5, we provide a lower bound for the length of crucial words over An avoiding abelian k-th powers.

AB - In 1961, Erdős asked whether or not there exist words of arbitrary length over a fixed finite alphabet that avoid patterns of the form XX' where X' is a permutation of X (called abelian squares). This problem has since been solved in the affirmative in a series of papers from 1968 to 1992. Much less is known in the case of abelian k-th powers, i.e., words of the form X1X2⋯Xk where Xi is a permutation of X1 for 2 ≤i ≤k. In this paper, we consider crucial words for abelian k-th powers, i.e., finite words that avoid abelian k-th powers, but which cannot be extended to the right by any letter of their own alphabets without creating an abelian k-th power. More specifically, we consider the problem of determining the minimal length of a crucial word avoiding abelian k-th powers. This problem has already been solved for abelian squares by Evdokimov and Kitaev (2004), who showed that a minimal crucial word over an n-letter alphabet An = {1,2,…, n} avoiding abelian squares has length 4n-7 for n≥3. Extending this result, we prove that a minimal crucial word over An avoiding abelian cubes has length 9n-13 for n≥5, and it has length 2, 5, 11, and 20 for n=1,2,3, and 4, respectively. Moreover, for n≥4 and k≥2, we give a construction of length k2(n-1)-k-1 of a crucial word over An avoiding abelian k-th powers. This construction gives the minimal length for k=2 and k=3. For k ≥4 and n≥5, we provide a lower bound for the length of crucial words over An avoiding abelian k-th powers.

KW - abelian squares

KW - abelian k-th power

KW - crucial word

UR - http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1330

M3 - Article

VL - 12

SP - 83

EP - 96

JO - Discrete Mathematics and Theoretical Computer Science

T2 - Discrete Mathematics and Theoretical Computer Science

JF - Discrete Mathematics and Theoretical Computer Science

SN - 1365-8050

IS - 5

ER -