TY - JOUR
T1 - Correlation between mitotic delay and aberration burden, and their role for the analysis of chromosomal damage
AU - Gudowska-Nowak, E
AU - Kleczkowski, A
AU - Nasonova, E
AU - Scholz, M
AU - Ritter, S
PY - 2005/1/31
Y1 - 2005/1/31
N2 - The aim was to investigate further the relationship between radiation-induced mitotic delay and the expression of chromosome damage in V79 cells. Recently published data on the time-course of chromosome aberrations in V79 first-cycle metaphases after exposure to 10.4 MeV u-1 Ar ions (LET = 1226 keV μ-1) were supplemented and reanalysed. A statistical analysis of the distribution of aberrations among cells was performed. Furthermore., cells were grouped into subpopulations carrying 0, 1-2, 3-4, 5-6 and 7 or more aberrations. Then, based on the mitotic index, the flux of each subgroup through the first mitosis was determined and the average entrance time to mitosis was estimated. For comparison, the flux of aberrant V79 cells generated by X-irradiation was analysed. Analysis of the Ar ion data revealed that the flux of each subpopulation through the first mitosis is strongly affected by its aberration burden, i.e. a positive correlation between the mitotic delay and the number of aberrations carried by a cell was observed. The distribution of aberrations among cells could be well described by Neyman-type A statistics; the corresponding fit parameters also reflect the damage-dependent mitotic delay. Interestingly, comparison of the flux of Ar ion and X-ray-irradiated V79 cells through mitosis revealed (1) that a direct correlation exists between the number of aberrations carried by a cell and its average entrance time to mitosis, and (2) that this effect is independent of the linear energy transfer. The role of these observations for radiation cytogenetics is discussed.
AB - The aim was to investigate further the relationship between radiation-induced mitotic delay and the expression of chromosome damage in V79 cells. Recently published data on the time-course of chromosome aberrations in V79 first-cycle metaphases after exposure to 10.4 MeV u-1 Ar ions (LET = 1226 keV μ-1) were supplemented and reanalysed. A statistical analysis of the distribution of aberrations among cells was performed. Furthermore., cells were grouped into subpopulations carrying 0, 1-2, 3-4, 5-6 and 7 or more aberrations. Then, based on the mitotic index, the flux of each subgroup through the first mitosis was determined and the average entrance time to mitosis was estimated. For comparison, the flux of aberrant V79 cells generated by X-irradiation was analysed. Analysis of the Ar ion data revealed that the flux of each subpopulation through the first mitosis is strongly affected by its aberration burden, i.e. a positive correlation between the mitotic delay and the number of aberrations carried by a cell was observed. The distribution of aberrations among cells could be well described by Neyman-type A statistics; the corresponding fit parameters also reflect the damage-dependent mitotic delay. Interestingly, comparison of the flux of Ar ion and X-ray-irradiated V79 cells through mitosis revealed (1) that a direct correlation exists between the number of aberrations carried by a cell and its average entrance time to mitosis, and (2) that this effect is independent of the linear energy transfer. The role of these observations for radiation cytogenetics is discussed.
KW - aberration yield
KW - compound poisson distribution
KW - high LET radiation
KW - mitotic delay
KW - time-course of aberrations
UR - http://www.scopus.com/inward/record.url?scp=18744373654&partnerID=8YFLogxK
U2 - 10.1080/09553000400027902
DO - 10.1080/09553000400027902
M3 - Article
C2 - 15962760
AN - SCOPUS:18744373654
SN - 0955-3002
VL - 81
SP - 23
EP - 32
JO - International Journal of Radiation Biology
JF - International Journal of Radiation Biology
IS - 1
ER -