Abstract
The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau–Lifshitz theory. Results indicate that even large chirps introduce a significantly smaller change to final state predictions than going from a classical to quantum model for radiation reaction, the nature of which can be intuitively understood.
Original language | English |
---|---|
Number of pages | 8 |
DOIs | |
Publication status | Published - 12 May 2015 |
Event | SPIE Optics + Optoelectronics: Relativistic Plasma Waves and Particle Beams as Coherent and Incoherent Radiation Sources - Prague, Czech Republic Duration: 13 Apr 2015 → 16 Apr 2015 |
Conference
Conference | SPIE Optics + Optoelectronics: Relativistic Plasma Waves and Particle Beams as Coherent and Incoherent Radiation Sources |
---|---|
Abbreviated title | SPIE2015 |
Country/Territory | Czech Republic |
City | Prague |
Period | 13/04/15 → 16/04/15 |
Keywords
- radiation reaction
- quantum effects
- semi-classical model
- beam cooling
- chirped lasers
Fingerprint
Dive into the research topics of 'Cooling of relativistic electron beams in chirped laser pulses'. Together they form a unique fingerprint.Datasets
-
Longitudinal beam cooling due to classical and semi-classical radiation reaction
Yoffe, S. (Creator), Noble, A. (Contributor), Kravets, Y. (Contributor) & Jaroszynski, D. (Contributor), University of Strathclyde, 21 Apr 2015
DOI: 10.15129/79f9c58d-7a43-4cc0-a613-ebc028519e5b
Dataset
-
Longitudinal beam cooling in chirped laser pulses
Yoffe, S. (Creator), Noble, A. (Contributor), Kravets, Y. (Contributor) & Jaroszynski, D. (Contributor), University of Strathclyde, 21 Apr 2015
DOI: 10.15129/44eaf2ee-f2a8-45b3-a05f-9575772d5ee6
Dataset