Convolutional neural network extreme learning machine for effective classification of hyperspectral images

Faxian Cao, Zhijing Yang, Jinchang Ren, Bingo Wing-Kuen Ling

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
40 Downloads (Pure)


Due to its excellent performance in terms of fast implementation, strong generalization capability and straightforward solution, extreme learning machine (ELM) has attracted increasingly attentions in pattern recognition such as face recognition and hyperspectral image (HSI) classification. However, the performance of ELM for HSI classification remains a challenging problem especially in effective extraction of the featured information from the massive volume of data. To this end, we propose in this paper a new method to combine Convolutional neural network (CNN) with ELM (CNN-ELM) for HSI classification. As CNN has been successfully applied for feature extraction in different applications, the combined CNN-ELM approach aims to take advantages of these two techniques for improved classification of HSI. By preserving the spatial features whilst reconstructing the spectral features of HSI, the proposed CNN-ELM method can significantly improve the accuracy of HSI classification without increasing the computational complexity. Comprehensive experiments using three publicly available HSI data sets, Pavia University, Pavia center, and Salinas have fully validated the improved performance of the proposed method when benchmarking with several state-of-the-art approaches.
Original languageEnglish
Article number035003
Number of pages23
JournalJournal of Applied Remote Sensing
Issue number3
Publication statusPublished - 5 Jul 2018


  • hyperspectral image (HSI) classification
  • convolutional neural network (CNN)
  • extreme learning machine (ELM)


Dive into the research topics of 'Convolutional neural network extreme learning machine for effective classification of hyperspectral images'. Together they form a unique fingerprint.

Cite this