Abstract
We consider the numerical approximation of a continuum model of antiferromagnetic and ferrimagnetic materials. The state of the material is described in terms of two unit-length vector fields, which can be interpreted as the magnetizations averaging the spins of two sublattices. For the static setting, which requires the solution of a constrained energy minimization problem, we introduce a discretization based on first-order finite elements and prove its Γ-convergence. Then, we propose and analyze two iterative algorithms for the computation of low-energy stationary points. The algorithms are obtained from (semi-)implicit time discretizations of gradient flows of the energy. Finally, we extend the algorithms to the dynamic setting, which consists of a nonlinear system of two Landau-Lifshitz-Gilbert equations solved by the two fields, and we prove unconditional stability and convergence of the finite element approximations toward a weak solution of the problem. Numerical experiments assess the performance of the algorithms and demonstrate their applicability for the simulation of physical processes involving antiferromagnetic and ferrimagnetic materials.
Original language | English |
---|---|
Place of Publication | Ithaca, NY |
Pages | 1-32 |
Number of pages | 32 |
DOIs | |
Publication status | Published - 8 Dec 2023 |
Keywords
- antiferromagnetism
- ferrimagnetism
- finite element method
- Gamma-convergence
- Landau-Lifshitz-Gilbert equation