Computing the near-wall region in gas micro- and nanofluidics: critical Knudsen layer phenomena

Jason M. Reese, Yunlong Zheng, Duncan A. Lockerby

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)
171 Downloads (Pure)

Abstract

In order to capture critical near-wall phenomena in gas micro- and nanoflows within conventional CFD codes, we present scaled Navier-Stokes-Fourier (NSF) constitutive relations. Our scaling is mathematically equivalent to applying an 'effective' viscosity to the original constitutive relations. An expression for this 'effective' transport coefficient is obtained from the half-space Kramer's flow problem. The advantage of our model over the traditional NSF equations is that the non-equilibrium flow near to the wall (the momentum Knudsen layer) can be described. Its advantage over higher-order hydrodynamic models for gas micro and nanoflows is that the boundary conditions remain the same as required for the traditional NSF equations, so modifications to current CFD codes (pro-vided they are already capable of modelling slip at solid surfaces) would be minimal. As an application example, we apply our model to the isothermal problem of a micro-sphere moving through a gas: we show that our model gives excellent results in the Knudsen number range Kn . 0:1 and acceptable results up to Kn ¼ 0:25. This is much better than the traditional NSF model with non-scaled constitutive relations.
Original languageEnglish
Pages (from-to)807-813
Number of pages7
JournalJournal of Computational and Theoretical Nanoscience
Volume4
Issue number4
DOIs
Publication statusPublished - Jun 2007

Keywords

  • Knudsen layer
  • rarefied gas flows
  • microfluidics
  • nanofluidics
  • constitutive relations

Fingerprint

Dive into the research topics of 'Computing the near-wall region in gas micro- and nanofluidics: critical Knudsen layer phenomena'. Together they form a unique fingerprint.

Cite this