Comparison of techniques for the analysis of industrial soils by atomic spectrometry

Peter Anderson, Christine M. Davidson, David Littlejohn, Allan M. Ure, Louise M. Garden, John Marshall

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Methods based on AAS, ICP-AES and XRFS have been developed for determination of Cd, Cr, Cu, Mn, Ni, Pb, V and Zn in soil layers from pits excavated on a redundant industrial site. Samples were dried and sieved, and the < 2 mm fraction was ground in a ball mill prior to analysis. For ICP-AES and AAS, Ig sub-samples were digested with aqua regia in a microwave oven. The dry weight detection Limits of the analytes were in the range 2-25 mu g g(-1) for FAAS, 0.003-0.2 mu g g(-1) for ETAAS and 0.04-1.6 mu g g(-1) for ICP-AES. When digests of the industrial soils were analysed, calibration with acid-matched standards gave acceptable accuracy for all the analytes, except for Cd when determined by ETAAS (30-40 % suppression). Despite lack of reference materials of industrial origin, analysis of two soil reference materials by these techniques produced concentrations that were within +/- 10 % of the certified or recommended values for elements extractable with aqua regia. Direct standard-less analysis of a soil reference material with a portable x-ray fluorescence (P-XRF) analyser gave concentrations for a range of elements that were within a factor of 2 of the certified values. When the XRFS and ICP-AES methods were used to analyse the industrial soils, the concentrations obtained were similar (to within 30%) for Cu, Pb and Zn in most of the samples and for Cr, Mn and Ni in some of the samples. The concentrations of V estimated with the P-XRF analyser were 4 to 7-fold higher than those obtained by ICP-AES. The discrepancies were thought to be caused by spectral enhancement interferences in XRFS. Cadmium was not determined accurately by either ICP-AES or P-XRFS owing to spectral interferences. The work has highlighted the importance of analysing samples from across a site and at different depths, when assessing the extent of metal contamination on industrial land.

Original languageEnglish
Pages (from-to)19-40
Number of pages22
JournalInternational Journal of Environmental Analytical Chemistry
Volume71
Issue number1
DOIs
Publication statusPublished - 1998

Fingerprint

Spectrometry
spectrometry
spectroscopy
Spectrum Analysis
Soil
Soils
atomic absorption spectrometry
soil
fluorescence
X-radiation
sampling
Fluorescence
X-Rays
Microwave ovens
X rays
methodology
microwave ovens
Ball mills
soil analysis
Microwaves

Keywords

  • contaminated land
  • microwave assisted digestion
  • atomic absorption spectrometry
  • inductively coupled plasma atomic emission spectrometry
  • portable x-ray fluorescence spectrometry

Cite this

@article{1a63c694c8a34a4984cdec7d6c0bcd8b,
title = "Comparison of techniques for the analysis of industrial soils by atomic spectrometry",
abstract = "Methods based on AAS, ICP-AES and XRFS have been developed for determination of Cd, Cr, Cu, Mn, Ni, Pb, V and Zn in soil layers from pits excavated on a redundant industrial site. Samples were dried and sieved, and the < 2 mm fraction was ground in a ball mill prior to analysis. For ICP-AES and AAS, Ig sub-samples were digested with aqua regia in a microwave oven. The dry weight detection Limits of the analytes were in the range 2-25 mu g g(-1) for FAAS, 0.003-0.2 mu g g(-1) for ETAAS and 0.04-1.6 mu g g(-1) for ICP-AES. When digests of the industrial soils were analysed, calibration with acid-matched standards gave acceptable accuracy for all the analytes, except for Cd when determined by ETAAS (30-40 {\%} suppression). Despite lack of reference materials of industrial origin, analysis of two soil reference materials by these techniques produced concentrations that were within +/- 10 {\%} of the certified or recommended values for elements extractable with aqua regia. Direct standard-less analysis of a soil reference material with a portable x-ray fluorescence (P-XRF) analyser gave concentrations for a range of elements that were within a factor of 2 of the certified values. When the XRFS and ICP-AES methods were used to analyse the industrial soils, the concentrations obtained were similar (to within 30{\%}) for Cu, Pb and Zn in most of the samples and for Cr, Mn and Ni in some of the samples. The concentrations of V estimated with the P-XRF analyser were 4 to 7-fold higher than those obtained by ICP-AES. The discrepancies were thought to be caused by spectral enhancement interferences in XRFS. Cadmium was not determined accurately by either ICP-AES or P-XRFS owing to spectral interferences. The work has highlighted the importance of analysing samples from across a site and at different depths, when assessing the extent of metal contamination on industrial land.",
keywords = "contaminated land, microwave assisted digestion, atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, portable x-ray fluorescence spectrometry",
author = "Peter Anderson and Davidson, {Christine M.} and David Littlejohn and Ure, {Allan M.} and Garden, {Louise M.} and John Marshall",
year = "1998",
doi = "10.1080/03067319808032615",
language = "English",
volume = "71",
pages = "19--40",
journal = "International Journal of Environmental Analytical Chemistry",
issn = "0306-7319",
number = "1",

}

Comparison of techniques for the analysis of industrial soils by atomic spectrometry. / Anderson, Peter; Davidson, Christine M.; Littlejohn, David; Ure, Allan M.; Garden, Louise M.; Marshall, John.

In: International Journal of Environmental Analytical Chemistry, Vol. 71, No. 1, 1998, p. 19-40.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Comparison of techniques for the analysis of industrial soils by atomic spectrometry

AU - Anderson, Peter

AU - Davidson, Christine M.

AU - Littlejohn, David

AU - Ure, Allan M.

AU - Garden, Louise M.

AU - Marshall, John

PY - 1998

Y1 - 1998

N2 - Methods based on AAS, ICP-AES and XRFS have been developed for determination of Cd, Cr, Cu, Mn, Ni, Pb, V and Zn in soil layers from pits excavated on a redundant industrial site. Samples were dried and sieved, and the < 2 mm fraction was ground in a ball mill prior to analysis. For ICP-AES and AAS, Ig sub-samples were digested with aqua regia in a microwave oven. The dry weight detection Limits of the analytes were in the range 2-25 mu g g(-1) for FAAS, 0.003-0.2 mu g g(-1) for ETAAS and 0.04-1.6 mu g g(-1) for ICP-AES. When digests of the industrial soils were analysed, calibration with acid-matched standards gave acceptable accuracy for all the analytes, except for Cd when determined by ETAAS (30-40 % suppression). Despite lack of reference materials of industrial origin, analysis of two soil reference materials by these techniques produced concentrations that were within +/- 10 % of the certified or recommended values for elements extractable with aqua regia. Direct standard-less analysis of a soil reference material with a portable x-ray fluorescence (P-XRF) analyser gave concentrations for a range of elements that were within a factor of 2 of the certified values. When the XRFS and ICP-AES methods were used to analyse the industrial soils, the concentrations obtained were similar (to within 30%) for Cu, Pb and Zn in most of the samples and for Cr, Mn and Ni in some of the samples. The concentrations of V estimated with the P-XRF analyser were 4 to 7-fold higher than those obtained by ICP-AES. The discrepancies were thought to be caused by spectral enhancement interferences in XRFS. Cadmium was not determined accurately by either ICP-AES or P-XRFS owing to spectral interferences. The work has highlighted the importance of analysing samples from across a site and at different depths, when assessing the extent of metal contamination on industrial land.

AB - Methods based on AAS, ICP-AES and XRFS have been developed for determination of Cd, Cr, Cu, Mn, Ni, Pb, V and Zn in soil layers from pits excavated on a redundant industrial site. Samples were dried and sieved, and the < 2 mm fraction was ground in a ball mill prior to analysis. For ICP-AES and AAS, Ig sub-samples were digested with aqua regia in a microwave oven. The dry weight detection Limits of the analytes were in the range 2-25 mu g g(-1) for FAAS, 0.003-0.2 mu g g(-1) for ETAAS and 0.04-1.6 mu g g(-1) for ICP-AES. When digests of the industrial soils were analysed, calibration with acid-matched standards gave acceptable accuracy for all the analytes, except for Cd when determined by ETAAS (30-40 % suppression). Despite lack of reference materials of industrial origin, analysis of two soil reference materials by these techniques produced concentrations that were within +/- 10 % of the certified or recommended values for elements extractable with aqua regia. Direct standard-less analysis of a soil reference material with a portable x-ray fluorescence (P-XRF) analyser gave concentrations for a range of elements that were within a factor of 2 of the certified values. When the XRFS and ICP-AES methods were used to analyse the industrial soils, the concentrations obtained were similar (to within 30%) for Cu, Pb and Zn in most of the samples and for Cr, Mn and Ni in some of the samples. The concentrations of V estimated with the P-XRF analyser were 4 to 7-fold higher than those obtained by ICP-AES. The discrepancies were thought to be caused by spectral enhancement interferences in XRFS. Cadmium was not determined accurately by either ICP-AES or P-XRFS owing to spectral interferences. The work has highlighted the importance of analysing samples from across a site and at different depths, when assessing the extent of metal contamination on industrial land.

KW - contaminated land

KW - microwave assisted digestion

KW - atomic absorption spectrometry

KW - inductively coupled plasma atomic emission spectrometry

KW - portable x-ray fluorescence spectrometry

U2 - 10.1080/03067319808032615

DO - 10.1080/03067319808032615

M3 - Article

VL - 71

SP - 19

EP - 40

JO - International Journal of Environmental Analytical Chemistry

JF - International Journal of Environmental Analytical Chemistry

SN - 0306-7319

IS - 1

ER -