Comparative study of erosion-corrosion performance on a range of stainless steels

Lampros Gerasimos Giourntas, Trevor Hodgkiess, Alexander Galloway

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Erosion-corrosion is a material deterioration phenomenon that occurs in hydraulic machinery that handles aggressive slurries. Many industries attempt to mitigate this challenging feature by modifying the design of components and/or by selecting more erosion-corrosion resistant materials. The latter strategy often involves the selection of corrosion resistant alloys (CRAs), which exhibit good performance in many environments instead of using coating techniques to shield vulnerable materials such as carbon steels even if this increases the initial cost.
An important attribute of the group of materials known as stainless steels is their capacity to resist high flow rates of many aqueous fluids. This contributes to the selection of various types of stainless steel in many engineering applications. Numerous studies have demonstrated that stainless steels display good erosion-corrosion performance in solid-free liquid impingement conditions [1,2]. This good behaviour is due to the ability of its chromium-rich, oxide passive film to resist breakdown even in rapidly flowing liquids and relatively high temperatures (up to 60oC)[3].
It is well known [4] that the durability of stainless steels decreases when suspended solids are present in the flowing liquid. On account of the diversity in composition, metallurgical structure and mechanical properties in stainless steels, it is of interest to compare the erosion-corrosion behaviour of a range of such materials in these more aggressive conditions.
Many past investigations, however, have focused on individual grades of stainless steel, such as the standard austenitic UNS S31600/31603 [5–9] and similar austenitic stainless steel UNS S30400 [10–12]. When more than one stainless type has been studied they have usually comprised comparing two grades. Examples of such work are studies of UNS S31600 versus superaustenitic stainless steel [13,14], comparison of austenitic UNS S30400 with martensitic UNS S42000 [15], martensitic UNS S41000 against UNS S32760 [16] and duplex/superduplex versus UNS 31600 [17,18]. Some of these researchers have also demonstrated the superior erosion-corrosion resistance of stainless steels over carbon steels [16,17,19,20].
Another important feature, of many studies of the erosion corrosion behaviour of stainless steels (and other materials), has been the application of cathodic protection (CP) for the assessment of the potential benefits of the material durability and also in unravelling of erosion corrosion mechanisms [13,14,17,21].
The current study comprised a comparative investigation of four types of stainless steel in solid/liquid impingement conditions in a saline environment. The objectives of this study were firstly to obtain any evidence of the different performances of these four types of stainless steel, which might impact on material selection for the Offshore and Oil and Gas Industry. Also, the aim was to ascertain the extent to which the different metallurgical structures and chemical compositions of the steels influence the fundamental mechanisms of erosion-corrosion. A medium carbon steel was also included in the programme as a low-corrosion-resistant comparator. The testing environment has included free erosion corrosion conditions and also experiments involving the application of cathodic protection.
LanguageEnglish
Pages1051-1058
Number of pages8
JournalWear
Volume332-333
Early online date8 Jan 2015
DOIs
Publication statusPublished - May 2015
Event20th International Conference on Wear of Materials - The Sheraton Centre, Toronto, Canada
Duration: 12 Apr 201516 Apr 2015

Fingerprint

Stainless Steel
erosion
stainless steels
Erosion
corrosion
Stainless steel
Corrosion
carbon steels
Carbon steel
impingement
Cathodic protection
Liquids
liquids
durability
grade
Durability
industries
Corrosion resistant alloys
Hydraulic machinery
materials selection

Keywords

  • erosion-corrosion
  • stainless steels
  • comparative analysis

Cite this

Giourntas, Lampros Gerasimos ; Hodgkiess, Trevor ; Galloway, Alexander. / Comparative study of erosion-corrosion performance on a range of stainless steels. In: Wear. 2015 ; Vol. 332-333. pp. 1051-1058.
@article{d04e0f94eb6648dcbd47bd2ff2acdd66,
title = "Comparative study of erosion-corrosion performance on a range of stainless steels",
abstract = "Erosion-corrosion is a material deterioration phenomenon that occurs in hydraulic machinery that handles aggressive slurries. Many industries attempt to mitigate this challenging feature by modifying the design of components and/or by selecting more erosion-corrosion resistant materials. The latter strategy often involves the selection of corrosion resistant alloys (CRAs), which exhibit good performance in many environments instead of using coating techniques to shield vulnerable materials such as carbon steels even if this increases the initial cost.An important attribute of the group of materials known as stainless steels is their capacity to resist high flow rates of many aqueous fluids. This contributes to the selection of various types of stainless steel in many engineering applications. Numerous studies have demonstrated that stainless steels display good erosion-corrosion performance in solid-free liquid impingement conditions [1,2]. This good behaviour is due to the ability of its chromium-rich, oxide passive film to resist breakdown even in rapidly flowing liquids and relatively high temperatures (up to 60oC)[3].It is well known [4] that the durability of stainless steels decreases when suspended solids are present in the flowing liquid. On account of the diversity in composition, metallurgical structure and mechanical properties in stainless steels, it is of interest to compare the erosion-corrosion behaviour of a range of such materials in these more aggressive conditions.Many past investigations, however, have focused on individual grades of stainless steel, such as the standard austenitic UNS S31600/31603 [5–9] and similar austenitic stainless steel UNS S30400 [10–12]. When more than one stainless type has been studied they have usually comprised comparing two grades. Examples of such work are studies of UNS S31600 versus superaustenitic stainless steel [13,14], comparison of austenitic UNS S30400 with martensitic UNS S42000 [15], martensitic UNS S41000 against UNS S32760 [16] and duplex/superduplex versus UNS 31600 [17,18]. Some of these researchers have also demonstrated the superior erosion-corrosion resistance of stainless steels over carbon steels [16,17,19,20].Another important feature, of many studies of the erosion corrosion behaviour of stainless steels (and other materials), has been the application of cathodic protection (CP) for the assessment of the potential benefits of the material durability and also in unravelling of erosion corrosion mechanisms [13,14,17,21].The current study comprised a comparative investigation of four types of stainless steel in solid/liquid impingement conditions in a saline environment. The objectives of this study were firstly to obtain any evidence of the different performances of these four types of stainless steel, which might impact on material selection for the Offshore and Oil and Gas Industry. Also, the aim was to ascertain the extent to which the different metallurgical structures and chemical compositions of the steels influence the fundamental mechanisms of erosion-corrosion. A medium carbon steel was also included in the programme as a low-corrosion-resistant comparator. The testing environment has included free erosion corrosion conditions and also experiments involving the application of cathodic protection.",
keywords = "erosion-corrosion, stainless steels, comparative analysis",
author = "Giourntas, {Lampros Gerasimos} and Trevor Hodgkiess and Alexander Galloway",
year = "2015",
month = "5",
doi = "10.1016/j.wear.2014.12.052",
language = "English",
volume = "332-333",
pages = "1051--1058",
journal = "Wear",
issn = "0043-1648",

}

Comparative study of erosion-corrosion performance on a range of stainless steels. / Giourntas, Lampros Gerasimos; Hodgkiess, Trevor; Galloway, Alexander.

In: Wear, Vol. 332-333, 05.2015, p. 1051-1058.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Comparative study of erosion-corrosion performance on a range of stainless steels

AU - Giourntas, Lampros Gerasimos

AU - Hodgkiess, Trevor

AU - Galloway, Alexander

PY - 2015/5

Y1 - 2015/5

N2 - Erosion-corrosion is a material deterioration phenomenon that occurs in hydraulic machinery that handles aggressive slurries. Many industries attempt to mitigate this challenging feature by modifying the design of components and/or by selecting more erosion-corrosion resistant materials. The latter strategy often involves the selection of corrosion resistant alloys (CRAs), which exhibit good performance in many environments instead of using coating techniques to shield vulnerable materials such as carbon steels even if this increases the initial cost.An important attribute of the group of materials known as stainless steels is their capacity to resist high flow rates of many aqueous fluids. This contributes to the selection of various types of stainless steel in many engineering applications. Numerous studies have demonstrated that stainless steels display good erosion-corrosion performance in solid-free liquid impingement conditions [1,2]. This good behaviour is due to the ability of its chromium-rich, oxide passive film to resist breakdown even in rapidly flowing liquids and relatively high temperatures (up to 60oC)[3].It is well known [4] that the durability of stainless steels decreases when suspended solids are present in the flowing liquid. On account of the diversity in composition, metallurgical structure and mechanical properties in stainless steels, it is of interest to compare the erosion-corrosion behaviour of a range of such materials in these more aggressive conditions.Many past investigations, however, have focused on individual grades of stainless steel, such as the standard austenitic UNS S31600/31603 [5–9] and similar austenitic stainless steel UNS S30400 [10–12]. When more than one stainless type has been studied they have usually comprised comparing two grades. Examples of such work are studies of UNS S31600 versus superaustenitic stainless steel [13,14], comparison of austenitic UNS S30400 with martensitic UNS S42000 [15], martensitic UNS S41000 against UNS S32760 [16] and duplex/superduplex versus UNS 31600 [17,18]. Some of these researchers have also demonstrated the superior erosion-corrosion resistance of stainless steels over carbon steels [16,17,19,20].Another important feature, of many studies of the erosion corrosion behaviour of stainless steels (and other materials), has been the application of cathodic protection (CP) for the assessment of the potential benefits of the material durability and also in unravelling of erosion corrosion mechanisms [13,14,17,21].The current study comprised a comparative investigation of four types of stainless steel in solid/liquid impingement conditions in a saline environment. The objectives of this study were firstly to obtain any evidence of the different performances of these four types of stainless steel, which might impact on material selection for the Offshore and Oil and Gas Industry. Also, the aim was to ascertain the extent to which the different metallurgical structures and chemical compositions of the steels influence the fundamental mechanisms of erosion-corrosion. A medium carbon steel was also included in the programme as a low-corrosion-resistant comparator. The testing environment has included free erosion corrosion conditions and also experiments involving the application of cathodic protection.

AB - Erosion-corrosion is a material deterioration phenomenon that occurs in hydraulic machinery that handles aggressive slurries. Many industries attempt to mitigate this challenging feature by modifying the design of components and/or by selecting more erosion-corrosion resistant materials. The latter strategy often involves the selection of corrosion resistant alloys (CRAs), which exhibit good performance in many environments instead of using coating techniques to shield vulnerable materials such as carbon steels even if this increases the initial cost.An important attribute of the group of materials known as stainless steels is their capacity to resist high flow rates of many aqueous fluids. This contributes to the selection of various types of stainless steel in many engineering applications. Numerous studies have demonstrated that stainless steels display good erosion-corrosion performance in solid-free liquid impingement conditions [1,2]. This good behaviour is due to the ability of its chromium-rich, oxide passive film to resist breakdown even in rapidly flowing liquids and relatively high temperatures (up to 60oC)[3].It is well known [4] that the durability of stainless steels decreases when suspended solids are present in the flowing liquid. On account of the diversity in composition, metallurgical structure and mechanical properties in stainless steels, it is of interest to compare the erosion-corrosion behaviour of a range of such materials in these more aggressive conditions.Many past investigations, however, have focused on individual grades of stainless steel, such as the standard austenitic UNS S31600/31603 [5–9] and similar austenitic stainless steel UNS S30400 [10–12]. When more than one stainless type has been studied they have usually comprised comparing two grades. Examples of such work are studies of UNS S31600 versus superaustenitic stainless steel [13,14], comparison of austenitic UNS S30400 with martensitic UNS S42000 [15], martensitic UNS S41000 against UNS S32760 [16] and duplex/superduplex versus UNS 31600 [17,18]. Some of these researchers have also demonstrated the superior erosion-corrosion resistance of stainless steels over carbon steels [16,17,19,20].Another important feature, of many studies of the erosion corrosion behaviour of stainless steels (and other materials), has been the application of cathodic protection (CP) for the assessment of the potential benefits of the material durability and also in unravelling of erosion corrosion mechanisms [13,14,17,21].The current study comprised a comparative investigation of four types of stainless steel in solid/liquid impingement conditions in a saline environment. The objectives of this study were firstly to obtain any evidence of the different performances of these four types of stainless steel, which might impact on material selection for the Offshore and Oil and Gas Industry. Also, the aim was to ascertain the extent to which the different metallurgical structures and chemical compositions of the steels influence the fundamental mechanisms of erosion-corrosion. A medium carbon steel was also included in the programme as a low-corrosion-resistant comparator. The testing environment has included free erosion corrosion conditions and also experiments involving the application of cathodic protection.

KW - erosion-corrosion

KW - stainless steels

KW - comparative analysis

UR - http://www.sciencedirect.com/science/article/pii/S0043164815000058

U2 - 10.1016/j.wear.2014.12.052

DO - 10.1016/j.wear.2014.12.052

M3 - Article

VL - 332-333

SP - 1051

EP - 1058

JO - Wear

T2 - Wear

JF - Wear

SN - 0043-1648

ER -