Comparative analysis of gradient-boosting ensembles for estimation of compressive strength of quaternary blend concrete

Ismail B. Mustapha, Muyideen Abdulkareem*, Taha M. Jassam, Ali H. AlAteah, Khaled A. Alawi Al-Sodani, Mohammed M. H. Al-Tholaia, Hatem Nabus, Sophia C. Alih, Zainab Abdulkareem, Abideen Ganiyu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
11 Downloads (Pure)

Abstract

Concrete compressive strength is usually determined 28 days after casting via crushing of samples. However, the design strength may not be achieved after this time-consuming and tedious process. While the use of machine learning (ML) and other computational intelligence methods have become increasingly common in recent years, findings from pertinent literatures show that the gradient-boosting ensemble models mostly outperform comparative methods while also allowing interpretable model. Contrary to comparison with other model types that has dominated existing studies, this study centres on a comprehensive comparative analysis of the performance of four widely used gradient-boosting ensemble implementations [namely, gradient-boosting regressor, light gradient-boosting model (LightGBM), extreme gradient boosting (XGBoost), and CatBoost] for estimation of the compressive strength of quaternary blend concrete. Given components of cement, Blast Furnace Slag (GGBS), Fly Ash, water, superplasticizer, coarse aggregate, and fine aggregate in addition to the age of each concrete mixture as input features, the performance of each model based on R2, RMSE, MAPE and MAE across varying training–test ratios generally show a decreasing trend in model performance as test partition increases. Overall, the test results showed that CatBoost outperformed the other models with R2, RMSE, MAE and MAPE values of 0.9838, 2.0709, 1.5966 and 0.0629, respectively, with further statistical analysis showing the significance of these results. Although the age of each concrete mixture was found to be the most important input feature for all four boosting models, sensitivity analysis of each model shows that the compressive strength of the mixtures does increase significantly after 100 days. Finally, a comparison of the performance with results from different ML-based methods in pertinent literature further shows the superiority of CatBoost over reported the methods.
Original languageEnglish
Article number20
Number of pages24
JournalInternational Journal of Concrete Structures and Materials
Volume18
DOIs
Publication statusPublished - 2 Apr 2024

Keywords

  • compressive strength
  • ensemble machine learning
  • gradient-boosting algorithms
  • quaternary blend concrete

Fingerprint

Dive into the research topics of 'Comparative analysis of gradient-boosting ensembles for estimation of compressive strength of quaternary blend concrete'. Together they form a unique fingerprint.

Cite this