TY - JOUR

T1 - Codebook cardinality spectrum of distributed arithmetic codes for stationary memoryless binary sources

AU - Fang, Yong

AU - Stankovic, Vladimir

N1 - © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

PY - 2020/10

Y1 - 2020/10

N2 - It was demonstrated that, as a nonlinear implementation of Slepian-Wolf Coding, Distributed Arithmetic Coding (DAC) outperforms traditional Low-Density Parity-Check (LPDC) codes for short code length and biased sources. This fact triggers research efforts into theoretical analysis of DAC. In our previous work, we proposed two analytical tools, Codebook Cardinality Spectrum (CCS) and Hamming Distance Spectrum, to analyze DAC for independent and identically-distributed (i.i.d.) binary sources with uniform distribution. This article extends our work on CCS from uniform i.i.d. binary sources to biased i.i.d. binary sources. We begin with the final CCS and then deduce each level of CCS backwards by recursion. The main finding of this article is that the final CCS of biased i.i.d. binary sources is not uniformly distributed over [0, 1). This article derives the final CCS of biased i.i.d. binary sources and proposes a numerical algorithm for calculating CCS effectively in practice. All theoretical analyses are well verified by experimental results.

AB - It was demonstrated that, as a nonlinear implementation of Slepian-Wolf Coding, Distributed Arithmetic Coding (DAC) outperforms traditional Low-Density Parity-Check (LPDC) codes for short code length and biased sources. This fact triggers research efforts into theoretical analysis of DAC. In our previous work, we proposed two analytical tools, Codebook Cardinality Spectrum (CCS) and Hamming Distance Spectrum, to analyze DAC for independent and identically-distributed (i.i.d.) binary sources with uniform distribution. This article extends our work on CCS from uniform i.i.d. binary sources to biased i.i.d. binary sources. We begin with the final CCS and then deduce each level of CCS backwards by recursion. The main finding of this article is that the final CCS of biased i.i.d. binary sources is not uniformly distributed over [0, 1). This article derives the final CCS of biased i.i.d. binary sources and proposes a numerical algorithm for calculating CCS effectively in practice. All theoretical analyses are well verified by experimental results.

KW - distributed source coding

KW - Slepian-Wolf coding

KW - distributed arithmetic coding

KW - codebook cardinality spectrum

KW - biased sources

UR - https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18

U2 - 10.1109/TIT.2020.3014965

DO - 10.1109/TIT.2020.3014965

M3 - Article

VL - 66

SP - 6580

EP - 6596

JO - IEEE Transactions on Information Theory

JF - IEEE Transactions on Information Theory

SN - 0018-9448

IS - 10

ER -