Projects per year
Abstract
This paper describes the process adopted to set up a FAST model to produce relevant design load cases (DLCs) for the Levenmouth (Samsung Heavy Industries - S7.0-171) demonstration foreshore wind turbine owned by the Offshore Renewable Energy Catapult (ORE Catapult). The paper does not take into account hydrodynamic forces.
Existing literature has carried out FAST studies predominantly using reference turbines (e.g. NREL-5MW, DTU-10MW) instead of real prototype or commercial turbines. This paper presents the results for the Levenmouth wind turbine, a real, operating demonstration wind turbine. The paper explores and simulates the critical loads for the turbine, which will be very valuable validation case for industrial and academic use. Moreover, the Levenmouth wind turbine exhibits a new generation of extremely flexible blades that conflict with the previous approaches used by most common aero-elastic codes and makes this simulation a challenge.
The study is divided into three steps. It starts with building the model and fine-tuning it until it matches the natural frequencies of the blades and tower. The second step encompasses the comparison of the commissioning results with the relevant NREL FAST simulations to match the dynamic behaviour of the turbine. The final step comprises a load comparison for the interface between the tower and transition piece, in order to validate the new aero-elastic model with the commissioning loads.
Existing literature has carried out FAST studies predominantly using reference turbines (e.g. NREL-5MW, DTU-10MW) instead of real prototype or commercial turbines. This paper presents the results for the Levenmouth wind turbine, a real, operating demonstration wind turbine. The paper explores and simulates the critical loads for the turbine, which will be very valuable validation case for industrial and academic use. Moreover, the Levenmouth wind turbine exhibits a new generation of extremely flexible blades that conflict with the previous approaches used by most common aero-elastic codes and makes this simulation a challenge.
The study is divided into three steps. It starts with building the model and fine-tuning it until it matches the natural frequencies of the blades and tower. The second step encompasses the comparison of the commissioning results with the relevant NREL FAST simulations to match the dynamic behaviour of the turbine. The final step comprises a load comparison for the interface between the tower and transition piece, in order to validate the new aero-elastic model with the commissioning loads.
Original language | English |
---|---|
Number of pages | 9 |
Publication status | Published - 17 Jun 2018 |
Event | 37th International Conference on Ocean, Offshore & Arctic Engineering - Madrid, Spain Duration: 17 Jun 2018 → 22 Jun 2018 |
Conference
Conference | 37th International Conference on Ocean, Offshore & Arctic Engineering |
---|---|
Abbreviated title | OMAE 2018 |
Country/Territory | Spain |
City | Madrid |
Period | 17/06/18 → 22/06/18 |
Keywords
- Levenmouth wind turbine
- FAST model
- critical loads
Fingerprint
Dive into the research topics of 'Code comparison of a NREL-FAST model of the Levenmouth wind turbine with the GH bladed commissioning results'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Industrial Doctoral Centre for Offshore Renewable Energy (IDCORE)
Incecik, A. (Principal Investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/10/11 → 31/03/22
Project: Research - Studentship