Characterization of route specific impurities found in methamphetamine synthesized by the Leuckart and reductive amination methods

Vanitha Kunalan, Niamh Nic Daeid, W.J. Kerr, Hilary A.S. Buchanan, Allan R. McPherson

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

Impurity profiling of seized methamphetamine can provide very useful information in criminal investigations and, specifically, on drug trafficking routes, sources of supply, and relationships between seizures. Particularly important is the identification of 'route specific' impurities or those which indicate the synthetic method used for manufacture in illicit laboratories. Previous researchers 1-2 have suggested impurities which are characteristic of the Leuckart and reductive amination (Al/Hg) methods of preparation. However, to date and importantly, these two synthetic methods have not been compared in a single study utilizing methamphetamine hydrochloride synthesised in-house and, therefore, of known synthetic origin. Using the same starting material, 1-phenyl-2-propanone (P2P), 40 batches of methamphetamine hydrochloride were synthesised by the Leuckart and reductive amination methods (20 batches per method). Both basic and acidic impurities were extracted separately and analysed by GC-MS. From this controlled study, two route specific impurities for the Leuckart method and one route specific impurity for the reductive amination method are reported. The intra- and inter-batch variation of these route specific impurities was assessed. Also, the variation of the 'target impurities' recently recommended for methamphetamine profiling is discussed in relation to their variation within and between production batches synthesized using the Leuckart and reductive amination routes.
Original languageEnglish
Pages (from-to)7342-7348
Number of pages7
JournalAnalytical Chemistry
Volume81
Issue number17
Early online date28 Jul 2009
DOIs
Publication statusPublished - 1 Sep 2009

    Fingerprint

Keywords

  • route specific impurities
  • methamphetamine
  • reductive amination methods
  • analtical chemistry

Cite this