## Abstract

Fragmentation of particle swarms into isolated subgroups occurs when interaction forces are weak or restricted. In the restricted case, the swarm experiences the onset of bottlenecks in the graph of interactions that can lead to the fragmentation of the system into subgroups. This work investigates the characteristics of such bottlenecks when the number of particles in the swarm

increases. It is shown, for the first time, that certain characteristics of the bottleneck can be captured by considering only the number of particles in the swarm. Considering the case of a connected communication graph constructed in the hypothesis that each particle is influenced by a fixed number of neighbouring particles, a limit case is determined for which a lower limit to the

Cheeger constant can be derived analytically without the need for extensive algebraic calculations. Results show that as the number of particles increases the Cheeger constant decreases. Although ensuring a minimum number of interactions per particle is sufficient, in theory, to ensure cohesion, the swarm may face fragmentation as more particles are added to the swarm.

increases. It is shown, for the first time, that certain characteristics of the bottleneck can be captured by considering only the number of particles in the swarm. Considering the case of a connected communication graph constructed in the hypothesis that each particle is influenced by a fixed number of neighbouring particles, a limit case is determined for which a lower limit to the

Cheeger constant can be derived analytically without the need for extensive algebraic calculations. Results show that as the number of particles increases the Cheeger constant decreases. Although ensuring a minimum number of interactions per particle is sufficient, in theory, to ensure cohesion, the swarm may face fragmentation as more particles are added to the swarm.

Original language | English |
---|---|

Article number | 032903 |

Number of pages | 12 |

Journal | Physical Review E |

Volume | 89 |

DOIs | |

Publication status | Published - 10 Mar 2014 |

## Keywords

- swarm behaviour
- swarm potential fields
- particle concentration effects