Chapter 11: Self-reporting Polymeric Materials with Mechanochromic Properties

Jose V. Araujo, Omar Rifaie-Graham, Edward A. Apebende, Nico Bruns

Research output: Chapter in Book/Report/Conference proceedingChapter

47 Downloads (Pure)


The mechanical transduction of force onto molecules is an essential feature of many biological processes that results in the senses of touch and hearing, gives important cues for cellular interactions and can lead to optically detectable signals, such as a change in colour, fluorescence or chemoluminescence. Polymeric materials that are able to visually indicate deformation, stress, strain or the occurrence of microdamage draw inspiration from these biological events. The field of self-reporting (or self-assessing) materials is reviewed. First, mechanochromic events in nature are discussed, such as the formation of bruises on skin, the bleeding of a wound, or marine glow caused by dinoflagellates. Then, materials based on force-responsive mechanophores, such as spiropyrans, cyclobutanes, cyclooctanes, Diels-Alder adducts, diarylbibenzofuranone and bis(adamantyl)-1,2-dioxetane are reviewed, followed by mechanochromic blends, chromophores stabilised by hydrogen bonds, and pressure sensors based on ionic interactions between fluorescent dyes and polyelectrolyte brushes. Mechanobiochemistry is introduced as an important tool to create self-reporting hybrid materials that combine polymers with the force-responsive properties of fluorescent proteins, protein FRET pairs, and other biomacromolecules. Finally, dye-filled microcapsules, microvascular networks, and hollow fibres are demonstrated to be important technologies to create damage-indicating coatings, self-reporting fibre-reinforced composites and self-healing materials.

Original languageEnglish
Title of host publicationBio-inspired Polymers
EditorsAndreas F. M. Kilbinger, Ben Zhong Tang, Nico Bruns
PublisherRoyal Society of Chemistry
Number of pages45
Publication statusPublished - 1 Jan 2017

Publication series

NameRSC Polymer Chemistry Series
ISSN (Print)2044-0790
ISSN (Electronic)2044-0804


  • polymeric materials
  • mechanochromic properties
  • polymers
  • polymer mechanochemistry
  • mechanobiochemistry


Dive into the research topics of 'Chapter 11: Self-reporting Polymeric Materials with Mechanochromic Properties'. Together they form a unique fingerprint.

Cite this