Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses

D. C. Carroll, O. Tresca, R. Prasad, L. Romagnani, P. S. Foster, P. Gallegos, S. Ter-Avetisyan, J. S. Green, M. J. V. Streeter, N. Dover, C. A. J. Palmer, C. M. Brenner, F. H. Cameron, K. E. Quinn, J. Schreiber, A. P. L. Robinson, T. Baeva, M. N. Quinn, X. H. Yuan, Z. Najmudin & 4 others M. Zepf, D. Neely, M. Borghesi, P. McKenna

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration.

LanguageEnglish
Article number045020
Number of pages15
JournalNew Journal of Physics
Volume12
DOIs
Publication statusPublished - 30 Apr 2010

Fingerprint

foils
carbon
pulses
incidence
lasers
ions
target thickness
sheaths
irradiation
energy
electrons
simulation

Keywords

  • proton acceleration
  • plasma interactions
  • solid targets
  • beams
  • ion acceleration
  • planar target foils
  • target normal sheath acceleration

Cite this

Carroll, D. C. ; Tresca, O. ; Prasad, R. ; Romagnani, L. ; Foster, P. S. ; Gallegos, P. ; Ter-Avetisyan, S. ; Green, J. S. ; Streeter, M. J. V. ; Dover, N. ; Palmer, C. A. J. ; Brenner, C. M. ; Cameron, F. H. ; Quinn, K. E. ; Schreiber, J. ; Robinson, A. P. L. ; Baeva, T. ; Quinn, M. N. ; Yuan, X. H. ; Najmudin, Z. ; Zepf, M. ; Neely, D. ; Borghesi, M. ; McKenna, P. / Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses. In: New Journal of Physics. 2010 ; Vol. 12.
@article{143907d4ae694467887ae332969ab15f,
title = "Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses",
abstract = "In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration.",
keywords = "proton acceleration, plasma interactions, solid targets, beams, ion acceleration, planar target foils, target normal sheath acceleration",
author = "Carroll, {D. C.} and O. Tresca and R. Prasad and L. Romagnani and Foster, {P. S.} and P. Gallegos and S. Ter-Avetisyan and Green, {J. S.} and Streeter, {M. J. V.} and N. Dover and Palmer, {C. A. J.} and Brenner, {C. M.} and Cameron, {F. H.} and Quinn, {K. E.} and J. Schreiber and Robinson, {A. P. L.} and T. Baeva and Quinn, {M. N.} and Yuan, {X. H.} and Z. Najmudin and M. Zepf and D. Neely and M. Borghesi and P. McKenna",
year = "2010",
month = "4",
day = "30",
doi = "10.1088/1367-2630/12/4/045020",
language = "English",
volume = "12",
journal = "New Journal of Physics",
issn = "1367-2630",

}

Carroll, DC, Tresca, O, Prasad, R, Romagnani, L, Foster, PS, Gallegos, P, Ter-Avetisyan, S, Green, JS, Streeter, MJV, Dover, N, Palmer, CAJ, Brenner, CM, Cameron, FH, Quinn, KE, Schreiber, J, Robinson, APL, Baeva, T, Quinn, MN, Yuan, XH, Najmudin, Z, Zepf, M, Neely, D, Borghesi, M & McKenna, P 2010, 'Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses' New Journal of Physics, vol. 12, 045020. https://doi.org/10.1088/1367-2630/12/4/045020

Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses. / Carroll, D. C.; Tresca, O.; Prasad, R.; Romagnani, L.; Foster, P. S.; Gallegos, P.; Ter-Avetisyan, S.; Green, J. S.; Streeter, M. J. V.; Dover, N.; Palmer, C. A. J.; Brenner, C. M.; Cameron, F. H.; Quinn, K. E.; Schreiber, J.; Robinson, A. P. L.; Baeva, T.; Quinn, M. N.; Yuan, X. H.; Najmudin, Z.; Zepf, M.; Neely, D.; Borghesi, M.; McKenna, P.

In: New Journal of Physics, Vol. 12, 045020, 30.04.2010.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses

AU - Carroll, D. C.

AU - Tresca, O.

AU - Prasad, R.

AU - Romagnani, L.

AU - Foster, P. S.

AU - Gallegos, P.

AU - Ter-Avetisyan, S.

AU - Green, J. S.

AU - Streeter, M. J. V.

AU - Dover, N.

AU - Palmer, C. A. J.

AU - Brenner, C. M.

AU - Cameron, F. H.

AU - Quinn, K. E.

AU - Schreiber, J.

AU - Robinson, A. P. L.

AU - Baeva, T.

AU - Quinn, M. N.

AU - Yuan, X. H.

AU - Najmudin, Z.

AU - Zepf, M.

AU - Neely, D.

AU - Borghesi, M.

AU - McKenna, P.

PY - 2010/4/30

Y1 - 2010/4/30

N2 - In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration.

AB - In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration.

KW - proton acceleration

KW - plasma interactions

KW - solid targets

KW - beams

KW - ion acceleration

KW - planar target foils

KW - target normal sheath acceleration

UR - http://www.scopus.com/inward/record.url?scp=77952635432&partnerID=8YFLogxK

U2 - 10.1088/1367-2630/12/4/045020

DO - 10.1088/1367-2630/12/4/045020

M3 - Article

VL - 12

JO - New Journal of Physics

T2 - New Journal of Physics

JF - New Journal of Physics

SN - 1367-2630

M1 - 045020

ER -