Canonical systems whose Weyl coefficients have dominating real part

Matthias Langer, Raphael Pruckner, Harald Woracek

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
13 Downloads (Pure)

Abstract

For a two-dimensional canonical system y'(t)=zJH(t)y(t) on the half-line (0, ∞) whose Hamiltonian H is a.e. positive semi-definite, denote by qH its Weyl coefficient. De Branges' inverse spectral theorem states that the assignment H → qH is a bijection between Hamiltonians (suitably normalised) and Nevanlinna functions.

The main result of the paper is a criterion when the singular integral of the spectral measure, i.e. Re qH(iy), dominates its Poisson integral Im qH(iy) for y  → + ∞. Two equivalent conditions characterising this situation are provided. The first one is analytic in nature, very simple, and explicit in terms of the primitive M of H. It merely depends on the relative size of the off-diagonal entries of M compared with the diagonal entries. The second condition is of geometric nature and technically more complicated. It involves the relative size of the off-diagonal entries of H, a measurement for oscillations of the diagonal of H, and a condition on the speed and smoothness of the rotation of H.
Original languageEnglish
Number of pages40
JournalJournal d'Analyse Mathématique
Early online date30 Aug 2023
DOIs
Publication statusE-pub ahead of print - 30 Aug 2023

Keywords

  • canonical system
  • Weyl coefficient
  • high-energy behaviour
  • singular integral
  • dominating real part

Fingerprint

Dive into the research topics of 'Canonical systems whose Weyl coefficients have dominating real part'. Together they form a unique fingerprint.

Cite this