Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses

G. Q. Liao, Y. T. Li, C. Li, L. N. Su, Y. Zheng, M. Liu, W. M. Wang, Z. D. Hu, W. C. Yan, J. Dunn, J. Nilsen, J. Hunter, Y. Liu, X. Wang, L. M. Chen, J. L. Ma, X. Lu, Z. Jin, R. Kodama, Z. M. ShengJ. Zhang

Research output: Contribution to journalLetterpeer-review

71 Citations (Scopus)
134 Downloads (Pure)

Abstract

Powerful terahertz (THz) radiation is observed from large-scale underdense preplasmas in front of a solid target irradiated obliquely with picosecond relativistic intense laser pulses. The radiation covers an extremely broad spectrum with about 70% of its energy located in the high frequency regime over 10 THz. The pulse energy of the radiation is found to be above 100  μJ per steradian in the laser specular direction at an optimal preplasma scale length around 40–50  μm. Particle-in-cell simulations indicate that the radiation is mainly produced by linear mode conversion from electron plasma waves, which are excited successively via stimulated Raman scattering instability and self-modulated laser wakefields during the laser propagation in the preplasma. This radiation can be used not only as a powerful source for applications, but also as a unique diagnostic of parametric instabilities of laser propagation in plasmas.
Original languageEnglish
Article number255001
Number of pages5
JournalPhysical Review Letters
Volume114
Issue number25
DOIs
Publication statusPublished - 23 Jun 2015

Keywords

  • terahertz radiation
  • intense laser pulses
  • electron plasma waves

Fingerprint

Dive into the research topics of 'Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses'. Together they form a unique fingerprint.

Cite this