Abstract
Attosecond light sources have the potential to open up new avenues in ultrafast science. However, the photon energies achieveable using existing generation schemes are limited to the keV range. Here we propose and numerically demonstrate an all-optical mechanism for the generation of bright MeV attosecond γ-photon beams with desirable angular momentum. Using a circularly-polarized Laguerre-Gaussian laser pulse focused onto a cone-foil target, dense attosecond bunches (. 170as) of electrons are produced. The electrons interact with the laser pulse which is reflected by a plasma mirror, producing ultra-brilliant (∼ 1023photons/s/mm2/mrad2/0.1%BW) multi-MeV (Eγ,max > 30MeV) isolated attosecond (. 260as) γ-ray pulse trains. Moreover, the angular momentum is transferred to γ-photon beams via nonlinear Compton scattering of ultra-intense tightly-focused laser pulse by energetic electrons. Such brilliant attosecond γ-photon source would provide new possibilities in the attosecond nuclear science.
Original language | English |
---|---|
Article number | 174102 |
Number of pages | 5 |
Journal | Applied Physics Letters |
Volume | 112 |
Issue number | 17 |
DOIs | |
Publication status | Published - 27 Apr 2018 |
Keywords
- attosecond light sources
- bright MeV attosecond γ-photon beams
- Laguerre-Gaussian laser pulse
Fingerprint
Dive into the research topics of 'Bright attosecond gamma-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets'. Together they form a unique fingerprint.Datasets
-
Data for: "Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets"
Sheng, Z.-M. (Creator), Zhu, X. (Creator) & McKenna, P. (Creator), University of Strathclyde, 23 Apr 2018
DOI: 10.15129/f1e47ec5-11b0-41a2-ab5d-00b402ba7552, https://hpc.sjtu.edu.cn/info/1011/1559.htm
Dataset