Brain health in diverse settings: how age, demographics and cognition shape brain function

Hernan Hernandez, Sandra Baez, Vicente Medel, Sebastian Moguilner, Jhosmary Cuadros, Hernando Santamaria-Garcia , Enzo Tagliazucchi, Pedro A. Valdes-Sosa, Francisco Lopera, John Fredy OchoaGómez, Alfredis González Hernández, Jasmin Bonilla-Santos, Rodrigo A. González-Montealegre, Tuba Aktürk, Ebru Yıldırım, Renato Anghinah, Agustina Legaz, Sol Fittipaldi, Görsev G. Yener, Javier EscuderoClaudio Babiloni, Susanna Lopez, Robert Whelan, Alberto A. Fernández Lucas, Adolfo M. García, David Huepe, Gaetano Di Caterina, Marcio Soto-Añari, Agustina Birba, Agustín Sainz-Ballesteros, Carlos Coronel, Eduar Herrera, Daniel Abasolo, Kerry Kilborn, Nicolás Rubido, Ruaridh Clark, Ruben Herzog, Deniz Yerlikaya, Bahar Güntekin, Mario A. Parra, Pavel Prado, Agustin Ibanez

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)
19 Downloads (Pure)

Abstract

Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1,298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.
Original languageEnglish
Article number120636
JournalNeuroImage
Volume295
Early online date25 May 2024
DOIs
Publication statusPublished - 15 Jul 2024

Funding

This work was supported by the Latin American Brain Health Institute (BrainLat) Seed Grant BL-SRGP2020-02 awarded to MAP and AI. AMG is an Atlantic Fellow at the Global Brain Health Institute (GBHI) and is partially supported with funding from the National Institute On Aging of the National Institutes of Health ( R01AG075775 , 2P01AG019724 ); ANID (FONDECYT Regular 1210176, 1210195); GBHI, Alzheimer's Association, and Alzheimer's Society (Alzheimer's Association GBHI ALZ UK-22-865742 ); the Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ib\u00E1\u00F1ez, Santiago, Chile ( #BL-SRGP2021-01 ); Programa Interdisciplinario de Investigaci\u00F3n Experimental en Comunicaci\u00F3n y Cognici\u00F3n ( PIIECC ), Facultad de Humanidades, USACH. AI is supported by grants from the MULTI-PARTNER CONSORTIUM TO EXPAND DEMENTIA RESEARCH IN LATIN AMERICA [ReDLat, supported by Fogarty International Center (FIC), National Institutes of Health, National Institutes of Aging ( R01 AG057234 , R01 AG075775 , R01 AG21051 , R01 AG083799 , CARDS-NIH), Alzheimer's Association ( SG-20-725707 ), Rainwater Charitable Foundation \u2013 The Bluefield project to cure FTD, and Global Brain Health Institute)], USS-FIN-23-FAPE-09, ANID/FONDECYT Regular ( 1210195 and 1210176 and 1220995 ); ANID/FONDAP/15150012; ANID/PIA/ANILLOS ACT210096; FONDEF ID20I10152, and ANID/FONDAP 15150012. The contents of this publication are solely the responsibility of the authors and do not represent the official views of these institutions.

Keywords

  • age
  • cognition
  • education
  • individual differences
  • sex
  • brain dynamics

Fingerprint

Dive into the research topics of 'Brain health in diverse settings: how age, demographics and cognition shape brain function'. Together they form a unique fingerprint.

Cite this