Blockage and relative velocity Morison forces on a dynamically-responding jacket in large waves and current

H. Santo, P. H. Taylor, A. H. Day, E. Nixon, Y. S. Choo

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

This paper documents large laboratory-scale measurements of hydrodynamic force time histories on a realistic 1:80 scale space-frame jacket structure, which is allowed to respond dynamically when exposed to combined waves and in-line current. This is a follow-on paper to Santo, Taylor, Day, Nixon and Choo (2018a) which used the same jacket structure but very stiffly supported. The aim is to investigate the validity of the Morison equation with a relative velocity formulation when applied to a complete space-frame structure, and to examine the fluid flow (and the associated hydrodynamic force) reduction relative to ambient flow due to the presence of the jacket structure as an obstacle array as well as the dynamic structural motion, interpreted as wave-current-structure blockage. Springs with different stiffness are used to allow the jacket to respond freely in the incident wavefield, with the emphasis on high frequency modes of structural vibration relative to the dominant wave frequency. Transient focussed wave groups, and embedded wave groups in a smaller regular wave background are generated in a towing tank. The jacket is towed under different speeds opposite to the wave direction to simulate wave loading with different in-line uniform currents. The measurements are compared with numerical predictions using Computational Fluid Dynamics (CFD), with the actual jacket represented in a three-dimensional numerical wave tank as a porous tower and modelled as a uniformly distributed Morison stress field derived from the relative velocity form. A time-domain ordinary differential equation solver is coupled internally with the CFD solver to account for feedback from the structural motion into the Morison distributed stress field. An approximate expanded form of the Morison relative-velocity is also tested and is recommended for practical industrial applications. Reasonably good agreement is achieved in terms of incident surface elevation, dynamic model displacement as well as total hydrodynamic force time histories, all using a single set of Morison drag (Cd) and inertia (Cm) coefficients, although the numerical results tend to slightly overpredict the total forces. The good agreement between measurements and numerical predictions and the generality of the results shows that the Morison relative-velocity formulation is appropriate for a wide range of space-frame structures. In these tests, this gives rise to additional damping of the dynamic system which is equivalent to 8% of critical damping. This is significantly larger than both the structural and hydrodynamic damping combined (which is about 1%) as quantified through free vibration (push test) in otherwise stationary water.
LanguageEnglish
Pages161-178
Number of pages18
JournalJournal of Fluids and Structures
Volume81
Early online date17 May 2018
DOIs
Publication statusPublished - 31 Aug 2018

Fingerprint

Hydrodynamics
Damping
Computational fluid dynamics
Ship model tanks
Structural dynamics
Ordinary differential equations
Towers
Industrial applications
Drag
Flow of fluids
Dynamic models
Dynamical systems
Stiffness
Feedback
Water

Keywords

  • Morison fluid loading
  • relative velocity
  • wave-current-structure blockage
  • porous block with embedded ODE simulation
  • spring-mass-damper system
  • CFD
  • fluid dynamics

Cite this

@article{ec30f7567cb541a7b4b18efb0dca2301,
title = "Blockage and relative velocity Morison forces on a dynamically-responding jacket in large waves and current",
abstract = "This paper documents large laboratory-scale measurements of hydrodynamic force time histories on a realistic 1:80 scale space-frame jacket structure, which is allowed to respond dynamically when exposed to combined waves and in-line current. This is a follow-on paper to Santo, Taylor, Day, Nixon and Choo (2018a) which used the same jacket structure but very stiffly supported. The aim is to investigate the validity of the Morison equation with a relative velocity formulation when applied to a complete space-frame structure, and to examine the fluid flow (and the associated hydrodynamic force) reduction relative to ambient flow due to the presence of the jacket structure as an obstacle array as well as the dynamic structural motion, interpreted as wave-current-structure blockage. Springs with different stiffness are used to allow the jacket to respond freely in the incident wavefield, with the emphasis on high frequency modes of structural vibration relative to the dominant wave frequency. Transient focussed wave groups, and embedded wave groups in a smaller regular wave background are generated in a towing tank. The jacket is towed under different speeds opposite to the wave direction to simulate wave loading with different in-line uniform currents. The measurements are compared with numerical predictions using Computational Fluid Dynamics (CFD), with the actual jacket represented in a three-dimensional numerical wave tank as a porous tower and modelled as a uniformly distributed Morison stress field derived from the relative velocity form. A time-domain ordinary differential equation solver is coupled internally with the CFD solver to account for feedback from the structural motion into the Morison distributed stress field. An approximate expanded form of the Morison relative-velocity is also tested and is recommended for practical industrial applications. Reasonably good agreement is achieved in terms of incident surface elevation, dynamic model displacement as well as total hydrodynamic force time histories, all using a single set of Morison drag (Cd) and inertia (Cm) coefficients, although the numerical results tend to slightly overpredict the total forces. The good agreement between measurements and numerical predictions and the generality of the results shows that the Morison relative-velocity formulation is appropriate for a wide range of space-frame structures. In these tests, this gives rise to additional damping of the dynamic system which is equivalent to 8{\%} of critical damping. This is significantly larger than both the structural and hydrodynamic damping combined (which is about 1{\%}) as quantified through free vibration (push test) in otherwise stationary water.",
keywords = "Morison fluid loading, relative velocity, wave-current-structure blockage, porous block with embedded ODE simulation, spring-mass-damper system, CFD, fluid dynamics",
author = "H. Santo and Taylor, {P. H.} and Day, {A. H.} and E. Nixon and Choo, {Y. S.}",
year = "2018",
month = "8",
day = "31",
doi = "10.1016/j.jfluidstructs.2018.05.007",
language = "English",
volume = "81",
pages = "161--178",
journal = "Journal of Fluids and Structures",
issn = "0889-9746",

}

Blockage and relative velocity Morison forces on a dynamically-responding jacket in large waves and current. / Santo, H.; Taylor, P. H.; Day, A. H.; Nixon, E.; Choo, Y. S.

In: Journal of Fluids and Structures, Vol. 81, 31.08.2018, p. 161-178.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Blockage and relative velocity Morison forces on a dynamically-responding jacket in large waves and current

AU - Santo, H.

AU - Taylor, P. H.

AU - Day, A. H.

AU - Nixon, E.

AU - Choo, Y. S.

PY - 2018/8/31

Y1 - 2018/8/31

N2 - This paper documents large laboratory-scale measurements of hydrodynamic force time histories on a realistic 1:80 scale space-frame jacket structure, which is allowed to respond dynamically when exposed to combined waves and in-line current. This is a follow-on paper to Santo, Taylor, Day, Nixon and Choo (2018a) which used the same jacket structure but very stiffly supported. The aim is to investigate the validity of the Morison equation with a relative velocity formulation when applied to a complete space-frame structure, and to examine the fluid flow (and the associated hydrodynamic force) reduction relative to ambient flow due to the presence of the jacket structure as an obstacle array as well as the dynamic structural motion, interpreted as wave-current-structure blockage. Springs with different stiffness are used to allow the jacket to respond freely in the incident wavefield, with the emphasis on high frequency modes of structural vibration relative to the dominant wave frequency. Transient focussed wave groups, and embedded wave groups in a smaller regular wave background are generated in a towing tank. The jacket is towed under different speeds opposite to the wave direction to simulate wave loading with different in-line uniform currents. The measurements are compared with numerical predictions using Computational Fluid Dynamics (CFD), with the actual jacket represented in a three-dimensional numerical wave tank as a porous tower and modelled as a uniformly distributed Morison stress field derived from the relative velocity form. A time-domain ordinary differential equation solver is coupled internally with the CFD solver to account for feedback from the structural motion into the Morison distributed stress field. An approximate expanded form of the Morison relative-velocity is also tested and is recommended for practical industrial applications. Reasonably good agreement is achieved in terms of incident surface elevation, dynamic model displacement as well as total hydrodynamic force time histories, all using a single set of Morison drag (Cd) and inertia (Cm) coefficients, although the numerical results tend to slightly overpredict the total forces. The good agreement between measurements and numerical predictions and the generality of the results shows that the Morison relative-velocity formulation is appropriate for a wide range of space-frame structures. In these tests, this gives rise to additional damping of the dynamic system which is equivalent to 8% of critical damping. This is significantly larger than both the structural and hydrodynamic damping combined (which is about 1%) as quantified through free vibration (push test) in otherwise stationary water.

AB - This paper documents large laboratory-scale measurements of hydrodynamic force time histories on a realistic 1:80 scale space-frame jacket structure, which is allowed to respond dynamically when exposed to combined waves and in-line current. This is a follow-on paper to Santo, Taylor, Day, Nixon and Choo (2018a) which used the same jacket structure but very stiffly supported. The aim is to investigate the validity of the Morison equation with a relative velocity formulation when applied to a complete space-frame structure, and to examine the fluid flow (and the associated hydrodynamic force) reduction relative to ambient flow due to the presence of the jacket structure as an obstacle array as well as the dynamic structural motion, interpreted as wave-current-structure blockage. Springs with different stiffness are used to allow the jacket to respond freely in the incident wavefield, with the emphasis on high frequency modes of structural vibration relative to the dominant wave frequency. Transient focussed wave groups, and embedded wave groups in a smaller regular wave background are generated in a towing tank. The jacket is towed under different speeds opposite to the wave direction to simulate wave loading with different in-line uniform currents. The measurements are compared with numerical predictions using Computational Fluid Dynamics (CFD), with the actual jacket represented in a three-dimensional numerical wave tank as a porous tower and modelled as a uniformly distributed Morison stress field derived from the relative velocity form. A time-domain ordinary differential equation solver is coupled internally with the CFD solver to account for feedback from the structural motion into the Morison distributed stress field. An approximate expanded form of the Morison relative-velocity is also tested and is recommended for practical industrial applications. Reasonably good agreement is achieved in terms of incident surface elevation, dynamic model displacement as well as total hydrodynamic force time histories, all using a single set of Morison drag (Cd) and inertia (Cm) coefficients, although the numerical results tend to slightly overpredict the total forces. The good agreement between measurements and numerical predictions and the generality of the results shows that the Morison relative-velocity formulation is appropriate for a wide range of space-frame structures. In these tests, this gives rise to additional damping of the dynamic system which is equivalent to 8% of critical damping. This is significantly larger than both the structural and hydrodynamic damping combined (which is about 1%) as quantified through free vibration (push test) in otherwise stationary water.

KW - Morison fluid loading

KW - relative velocity

KW - wave-current-structure blockage

KW - porous block with embedded ODE simulation

KW - spring-mass-damper system

KW - CFD

KW - fluid dynamics

UR - https://www.journals.elsevier.com/journal-of-fluids-and-structures

U2 - 10.1016/j.jfluidstructs.2018.05.007

DO - 10.1016/j.jfluidstructs.2018.05.007

M3 - Article

VL - 81

SP - 161

EP - 178

JO - Journal of Fluids and Structures

T2 - Journal of Fluids and Structures

JF - Journal of Fluids and Structures

SN - 0889-9746

ER -