Blast resilience of composite sandwich panels with hybrid glass-fibre and carbon-fibre skins

E. Rolfe, R. Quinn, A. Sancho, C. Kaboglu, A. Johnson, H. Liu, P. A. Hooper, J. P. Dear, H. Arora

Research output: Contribution to journalArticle

Abstract

The development of composite materials through hybridisation is receiving a lot of interest; due to the multiple benefits, this may bring to many industries. These benefits include decreased brittle behaviour, which is an inherent weakness for composite materials, and the enhancement of mechanical properties due to the hybrid effect, such as tensile and flexural strength. The effect of implementing hybrid composites as skins on composite sandwich panels is not well understood under high strain rate loading, including blast loading. This paper investigates the blast resilience of two types of hybrid composite sandwich panel against a full-scale explosive charge. Two hybrid composite sandwich panels were mounted at a 15 m stand-off distance from a 100 kg nitromethane charge. The samples were designed to reveal whether the fabric layup order of the skins influences blast response. Deflection of the sandwich panels was recorded using high-speed 3D digital image correlation (DIC) during the blast. It was concluded that the combination of glass-fibre reinforced polymer (GFRP) and carbon-fibre reinforced polymer (CFRP) layers in hybrid laminate skins of sandwich panels decreases the normalised deflection compared to both GFRP and CFRP panels by up to 41 and 23%, respectively. The position of the glass-fibre and carbon-fibre layers does not appear to affect the sandwich panel deflection and strain. A finite element model has successfully been developed to predict the elastic response of a hybrid panel under air blast loading. The difference between the maximum central displacement of the experimental data and numerical simulation was ca. 5% for the hybrid panel evaluated.
LanguageEnglish
Pages197-210
Number of pages14
JournalMultiscale and Multidisciplinary Modelling, Experiments and Design
Volume1
Issue number3
Early online date18 Jul 2018
DOIs
Publication statusPublished - 1 Sep 2018

Fingerprint

Glass fibers
Carbon fibers
Skin
Composite materials
Polymers
Bending strength
Laminates
Strain rate
Tensile strength
Mechanical properties
Computer simulation
Air
Industry

Keywords

  • blast
  • hybrid composites
  • composite sandwich
  • digital image correlation (DIC)

Cite this

Rolfe, E. ; Quinn, R. ; Sancho, A. ; Kaboglu, C. ; Johnson, A. ; Liu, H. ; Hooper, P. A. ; Dear, J. P. ; Arora, H. / Blast resilience of composite sandwich panels with hybrid glass-fibre and carbon-fibre skins. In: Multiscale and Multidisciplinary Modelling, Experiments and Design. 2018 ; Vol. 1, No. 3. pp. 197-210.
@article{844ed43689564517ab95b9b5a0de671f,
title = "Blast resilience of composite sandwich panels with hybrid glass-fibre and carbon-fibre skins",
abstract = "The development of composite materials through hybridisation is receiving a lot of interest; due to the multiple benefits, this may bring to many industries. These benefits include decreased brittle behaviour, which is an inherent weakness for composite materials, and the enhancement of mechanical properties due to the hybrid effect, such as tensile and flexural strength. The effect of implementing hybrid composites as skins on composite sandwich panels is not well understood under high strain rate loading, including blast loading. This paper investigates the blast resilience of two types of hybrid composite sandwich panel against a full-scale explosive charge. Two hybrid composite sandwich panels were mounted at a 15 m stand-off distance from a 100 kg nitromethane charge. The samples were designed to reveal whether the fabric layup order of the skins influences blast response. Deflection of the sandwich panels was recorded using high-speed 3D digital image correlation (DIC) during the blast. It was concluded that the combination of glass-fibre reinforced polymer (GFRP) and carbon-fibre reinforced polymer (CFRP) layers in hybrid laminate skins of sandwich panels decreases the normalised deflection compared to both GFRP and CFRP panels by up to 41 and 23{\%}, respectively. The position of the glass-fibre and carbon-fibre layers does not appear to affect the sandwich panel deflection and strain. A finite element model has successfully been developed to predict the elastic response of a hybrid panel under air blast loading. The difference between the maximum central displacement of the experimental data and numerical simulation was ca. 5{\%} for the hybrid panel evaluated.",
keywords = "blast, hybrid composites, composite sandwich, digital image correlation (DIC)",
author = "E. Rolfe and R. Quinn and A. Sancho and C. Kaboglu and A. Johnson and H. Liu and Hooper, {P. A.} and Dear, {J. P.} and H. Arora",
year = "2018",
month = "9",
day = "1",
doi = "10.1007/s41939-018-0025-9",
language = "English",
volume = "1",
pages = "197--210",
journal = "Multiscale and Multidisciplinary Modelling, Experiments and Design",
issn = "2520-8160",
publisher = "Springer",
number = "3",

}

Blast resilience of composite sandwich panels with hybrid glass-fibre and carbon-fibre skins. / Rolfe, E.; Quinn, R.; Sancho, A.; Kaboglu, C.; Johnson, A.; Liu, H.; Hooper, P. A.; Dear, J. P.; Arora, H.

In: Multiscale and Multidisciplinary Modelling, Experiments and Design, Vol. 1, No. 3, 01.09.2018, p. 197-210.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Blast resilience of composite sandwich panels with hybrid glass-fibre and carbon-fibre skins

AU - Rolfe, E.

AU - Quinn, R.

AU - Sancho, A.

AU - Kaboglu, C.

AU - Johnson, A.

AU - Liu, H.

AU - Hooper, P. A.

AU - Dear, J. P.

AU - Arora, H.

PY - 2018/9/1

Y1 - 2018/9/1

N2 - The development of composite materials through hybridisation is receiving a lot of interest; due to the multiple benefits, this may bring to many industries. These benefits include decreased brittle behaviour, which is an inherent weakness for composite materials, and the enhancement of mechanical properties due to the hybrid effect, such as tensile and flexural strength. The effect of implementing hybrid composites as skins on composite sandwich panels is not well understood under high strain rate loading, including blast loading. This paper investigates the blast resilience of two types of hybrid composite sandwich panel against a full-scale explosive charge. Two hybrid composite sandwich panels were mounted at a 15 m stand-off distance from a 100 kg nitromethane charge. The samples were designed to reveal whether the fabric layup order of the skins influences blast response. Deflection of the sandwich panels was recorded using high-speed 3D digital image correlation (DIC) during the blast. It was concluded that the combination of glass-fibre reinforced polymer (GFRP) and carbon-fibre reinforced polymer (CFRP) layers in hybrid laminate skins of sandwich panels decreases the normalised deflection compared to both GFRP and CFRP panels by up to 41 and 23%, respectively. The position of the glass-fibre and carbon-fibre layers does not appear to affect the sandwich panel deflection and strain. A finite element model has successfully been developed to predict the elastic response of a hybrid panel under air blast loading. The difference between the maximum central displacement of the experimental data and numerical simulation was ca. 5% for the hybrid panel evaluated.

AB - The development of composite materials through hybridisation is receiving a lot of interest; due to the multiple benefits, this may bring to many industries. These benefits include decreased brittle behaviour, which is an inherent weakness for composite materials, and the enhancement of mechanical properties due to the hybrid effect, such as tensile and flexural strength. The effect of implementing hybrid composites as skins on composite sandwich panels is not well understood under high strain rate loading, including blast loading. This paper investigates the blast resilience of two types of hybrid composite sandwich panel against a full-scale explosive charge. Two hybrid composite sandwich panels were mounted at a 15 m stand-off distance from a 100 kg nitromethane charge. The samples were designed to reveal whether the fabric layup order of the skins influences blast response. Deflection of the sandwich panels was recorded using high-speed 3D digital image correlation (DIC) during the blast. It was concluded that the combination of glass-fibre reinforced polymer (GFRP) and carbon-fibre reinforced polymer (CFRP) layers in hybrid laminate skins of sandwich panels decreases the normalised deflection compared to both GFRP and CFRP panels by up to 41 and 23%, respectively. The position of the glass-fibre and carbon-fibre layers does not appear to affect the sandwich panel deflection and strain. A finite element model has successfully been developed to predict the elastic response of a hybrid panel under air blast loading. The difference between the maximum central displacement of the experimental data and numerical simulation was ca. 5% for the hybrid panel evaluated.

KW - blast

KW - hybrid composites

KW - composite sandwich

KW - digital image correlation (DIC)

U2 - 10.1007/s41939-018-0025-9

DO - 10.1007/s41939-018-0025-9

M3 - Article

VL - 1

SP - 197

EP - 210

JO - Multiscale and Multidisciplinary Modelling, Experiments and Design

T2 - Multiscale and Multidisciplinary Modelling, Experiments and Design

JF - Multiscale and Multidisciplinary Modelling, Experiments and Design

SN - 2520-8160

IS - 3

ER -