Abstract
Deprotonation of [7-(1′-closo-1′,2′-C2B10H11)-nido-7,8-C2B9H11]− and reaction with [Rh(PPh3)3Cl] results in isomerization of the metalated cage and the formation of [8-(1′-closo-1′,2′-C2B10H11)-2-H-2,2-(PPh3)2-closo-2,1,8-RhC2B9H10] (1). Similarly, deprotonation/metalation of [8′-(7-nido-7,8-C2B9H11)-2′-(p-cymene)-closo-2′,1′,8′-RuC2B9H10]− and [8′-(7-nido-7,8-C2B9H11)-2′-Cp*-closo-2′,1′,8′-CoC2B9H10]− affords [8-{8′-2′-(p-cymene)-closo-2′,1′,8′-RuC2B9H10}-2-H-2,2-(PPh3)2-closo-2,1,8-RhC2B9H10] (2) and [8-(8′-2′-Cp*-closo-2′,1′,8′-CoC2B9H10)-2-H-2,2-(PPh3)2-closo-2,1,8-RhC2B9H10] (3), respectively, as diastereoisomeric mixtures. The performances of compounds 1–3 as catalysts in the isomerization of 1-hexene and in the hydrosilylation of acetophenone are compared with those of the known single-cage species [3-H-3,3-(PPh3)2-closo-3,1,2-RhC2B9H11] (I) and [2-H-2,2-(PPh3)2-closo-2,1,12-RhC2B9H11] (V), the last two compounds also being the subjects of 103Rh NMR spectroscopic studies, the first such investigations of rhodacarboranes. In alkene isomerization all the 2,1,8- or 2,1,12-RhC2B9 species (1–3, V) outperform the 3,1,2-RhC2B9 compound I, while for hydrosilylation the single-cage compounds I and V are better catalysts than the double-cage species 1–3.
Original language | English |
---|---|
Pages (from-to) | 2011-2023 |
Number of pages | 13 |
Journal | Inorganic Chemistry |
Volume | 59 |
Issue number | 3 |
Early online date | 16 Jan 2020 |
DOIs | |
Publication status | Published - 3 Feb 2020 |
Keywords
- anions
- catalysts
- isomerization
- solvents
- nuclear magnetic resonance spectroscopy