Abstract
Introduction: The contribution of micro-organisms to amorphous silica precipitation in modern geothermal hot-spring environments has been the topic of intense study in the last three to four decades. Here, we present a review on the field and laboratory studies that have specifically addressed bacterial silicification, with a special focus on cyanobacterial silicification. Studies related to the biogenic silicification processes in diatoms, radiolarians and sponges are not discussed, despite the fact that, in the modern oceans (which are undersaturated with respect to silica), the diagenetic ‘ripening’ of such biogenic silica controls the global silica cycle (Dixit et al., 2001). It is well-known that the amorphous silica in these organisms (particularly in size, shape and orientation) is controlled primarily by the templating functions of glycoproteins and polypeptides (e.g. silaffin and silicatein). For information on these issues, we refer the reader to the extensive reviews by Simpson & Volcani (1981), Kröger et al. (1997, 2000), Baeuerlein (2000), Perry & Keeling-Tucker (2000), Hildebrand & Wetherbee (2003) and Perry (2003). In addition, in terrestrial environments, a large pool of amorphous silica is cycled through higher plants (grasses and trees) that are believed to use silicification as a protection mechanism against pathogens and insects. Information on these processes can be found in the papers by Chen & Lewin (1969), Sangster & Hodson (1986) and Perry & Fraser (1991).
Original language | English |
---|---|
Title of host publication | Micro-Organisms and Earth Systems - Advances in Geomicrobiology: Published for the Society for General Microbiology |
Publisher | Cambridge University Press |
Pages | 131-150 |
Number of pages | 20 |
ISBN (Electronic) | 9780511754852 |
ISBN (Print) | 0521862221, 9780521862226 |
DOIs | |
Publication status | Published - 1 Jan 2005 |
Externally published | Yes |
Keywords
- micro-organisms
- amorphous silica precipitation
- bacterial silification
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Biosilicification: The role of cyanobacteria in silica sinter deposition'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Biosilicification : The role of cyanobacteria in silica sinter deposition. / Benning, Liane G.; Phoenix, Vernon R.; Mountain, Bruce W.
Micro-Organisms and Earth Systems - Advances in Geomicrobiology: Published for the Society for General Microbiology. Cambridge University Press, 2005. p. 131-150.Research output: Chapter in Book/Report/Conference proceeding › Chapter
TY - CHAP
T1 - Biosilicification
T2 - The role of cyanobacteria in silica sinter deposition
AU - Benning, Liane G.
AU - Phoenix, Vernon R.
AU - Mountain, Bruce W.
N1 - Alexander, G. B. (1975). The effect of particle size on the solubility of amorphous silica in water. J Phys Chem 61, 1563–1564. Aplin, K. R. (1987). The diffusion of dissolved silica in dilute aqueous solution. Geochim Cosmochim Acta 51, 2147–2151. Baeuerlein, E. (editor) (2000). Biomineralization: from Biology to Biotechnology and Medical Application. Weinheim, Germany: Wiley-VCH. Benning, L. G. & Mountain, B. W. (2004). The silicification of microorganisms: a comparison between in situ experiments in the field and in the laboratory. In Proceedings of the 11th International Symposium on Water–Rock Interactions, pp. 3–10. Edited by R. Wanty, R. Seal & A. A. Balkema. London: Taylor & Francis. Benning, L. G., Phoenix, V. R., Yee, N. & Tobin, M. J. (2004a). Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy. Geochim Cosmochim Acta 68, 729–741. Benning, L. G., Phoenix, V. R., Yee, N. & Konhauser, K. O. (2004b). The dynamics of cyanobacterial silicification: an infrared micro-spectroscopic investigation. Geochim Cosmochim Acta 68, 743–757. Cady, S. L. (2001). Paleobiology of the Archean. Adv Appl Microbiol 50, 3–35. Cady, S. L. & Farmer, J. D. (1996). Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. Ciba Found Symp 202, 150–173. Carroll, S., Mroczek, E., Alai, M. & Ebert, M. (1998). Amorphous silica precipitation (60 to 120 °C): comparison of laboratory and field rates. Geochim Cosmochim Acta 62, 1379–1396. Chen, C. H. & Lewin, J. (1969). Silicon as a nutrient element for Equisetum arvense. Can J Bot 47, 125–131. Cloud, P. E. (1965). Significance of the Gunflint (Precambrian) microflora. Science 148, 27–35. Dixit, S., Van Capellen, P. & van Bennekom, A. J. (2001). Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Mar Chem 73, 333–352. Dove, P. M. & Rimstidt, J. D. (1994). Silica–water interactions. In Silica: Physical Behaviour, Geochemistry, and Materials Applications (Reviews in Mineralogy 29), pp. 259–308. Edited by P. J. Heaney, C. T. Prewitt & G. V. Gibbs. Washington, DC: Mineralogical Society of America. Drews, G. & Weckesser, J. (1982). Function, structure and composition of cell walls and external layers. In The Biology of Cyanobacteria, pp. 333–357. Edited by N. G. Carr & B. A. Whitton. Oxford: Blackwell Scientific Publications. Dudman, W. F. (1977). The role of surface polysaccharides in natural environments. In Surface Carbohydrates of the Prokaryotic Cell, pp. 357–414. Edited by I. Sutherland. London: Academic Press. Everett, D. H. (1988). Basic Principles of Colloid Science. London: Royal Society of Chemistry. Fein, J. B., Scott, S. & Rivera, N. (2002). The effect of Fe on Si adsorption by Bacillus subtilis cell walls: insights into non-metabolic bacterial precipitation of silicate minerals. Chem Geol 182, 265–273. Ferris, F. G., Beveridge, T. J. & Fyfe, W. S. (1986). Iron–silica crystallite nucleation by bacteria in a geothermal sediment. Nature 320, 609–611. 65 Book 22/7/05 1:21 pm Page 146 use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511754852.008 Downloaded from https:/www.cambridge.org/core. University of Strathclyde, on 18 Jan 2017 at 16:56:12, subject to the Cambridge Core terms of Biosilicification by cyanobacteria 147 SGM symposium 65 Ferris, F. G., Fyfe, W. S. & Beveridge, T. J. (1988). Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16, 149–152. Francis, S., Margulis, L. & Barghoorn, E. S. (1978). On the experimental silicification of microorganisms. II. On the time of appearance of eukaryotic organisms in the fossil record. Precambrian Res 6, 65–100. Garcia-Pichel, F. & Castenholz, R. W. (1991). Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27, 395–409. Gedde, U. W. (1995). Polymer Physics. London: Chapman & Hall. Gunnarsson, I. & Arnórsson, S. (2000). Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350 °C at Psat. Geochim Cosmochim Acta 64, 2295–2307. Heijnen, C. E., Hok-A-Hin, C. H. & van Veen, J. A. (1992). Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24, 533–538. Herdianita, N. R., Browne, P. R. L., Rodgers, K. A. & Campbell, K. A. (2000). Mineralogical and morphological changes accompanying ageing of siliceous sinter. Mineral Deposita 35, 48–62. Herdman, M. & Rippka, R. (1988). Cellular differentiation: hormogonia and baeocytes. Methods Enzymol 167, 232–242. Hildebrand, M. & Wetherbee, R. (2003). Components and control of silicification in diatoms. Prog Mol Subcell Biol 33, 11–57. Hoiczyk, E. (1998). Structural and biochemical analysis of the sheath of Phormidium uncinatum. J Bacteriol 180, 3923–3932. Hoiczyk, E. & Hansel, A. (2000). Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182, 1191–1199. Hulbert, S. F. (1969). Models for solid-state reactions in powder compacts: a review. J Br Ceramic Soc 6, 11–20. Hunter, R. J. (1996). Introduction to Modern Colloid Science. New York: Oxford University Press. Icopini, G. A., Brantley, S. L. & Heaney, P. J. (2005). Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25 °C. Geochim Cosmochim Acta 69, 293–303. Iler, R. K. (1979). The Colloid Chemistry of Silica and Silicates. Ithaca, NY: Cornell University Press. Iler, R. K. (1980). Isolation and characterization of particle nuclei during the polymerization of silicic acid to colloidal silica. J Colloid Interface Sci 75, 138–148. Jamtveit, B. & Meakin, P. (editors) (1999). Growth, Dissolution and Pattern Formation in Geosystems. Dordrecht: Kluwer. Jones, B., Renaut, R. W. & Rosen, M. R. (1998). Microbial biofacies in hot-spring sinters: a model based on Ohaaki Pool, North Island, New Zealand. J Sediment Res 68, 413–434. Jones, B., Renaut, R. W. & Rosen, M. R. (2000). Stromatolites forming in acidic hot-spring waters, North Island, New Zealand. Palaios 15, 450–475. Jones, B., Renaut, R. W. & Rosen, M. R. (2001). Taphonomy of silicified filamentous microbes in modern geothermal sinters – implications for identification. Palaios 16, 580–592. Jurgens, U. J. & Mantele, W. (1991). Orientation of carotenoids in the outer membrane of Synechocystis PCC 6714 (cyanobacteria). Biochim Biophys Acta 1067, 208– 212. 65 Book 22/7/05 1:21 pm Page 147 use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511754852.008 Downloaded from https:/www.cambridge.org/core. University of Strathclyde, on 18 Jan 2017 at 16:56:12, subject to the Cambridge Core terms of 148 L. G. Benning and others SGM symposium 65 Kasting, J. F. (1987). Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res 34, 205–229. Knauth, L. P. & Epstein, S. (1982). The nature of water in hydrous silica. Am Mineral 67, 510–520. Konhauser, K. O. (2000). Hydrothermal bacterial biomineralization: potential modern-day analogues for banded iron-formations. In Marine Authigenesis: From Global to Microbial (Society for Sedimentary Geology Special Publication no. 66), pp. 133–145. Edited by C. R. Glenn, J. Lucas and L. Prévôt. Tulsa, OK: Society for Sedimentary Geology. Konhauser, K. O. & Ferris, F. G. (1996). Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: implications for Precambrian iron formations. Geology 24, 323–326. Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., Adams, D. G. & Head, I. M. (2001). Microbial–silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology 48, 415–433. Kröger, N., Lehmann, G., Rachel, R. & Sumper, M. (1997). Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. Eur J Biochem 250, 99–105. Kröger, N., Deutzmann, R., Bergsdorf, C. & Sumper, M. (2000). Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci U S A 97, 14133–14138. Langer, K. & Flörke, O. W. (1974). Near infrared absorption spectra (4000–9000 cm–1) of opals and the role of “water” in these SiO2 . nH2O minerals. Fortschr Miner 52, 17–51. Leo, R. F. & Barghoorn, E. S. (1976). Silicification of wood. Bot Mus Leafl Harv Univ 25, 1–47. Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R. & Meakin, P. (1990). Universal reaction-limited colloid aggregation. Phys Rev A 41, 2005–2020. Martin, J. E. (1987). Slow aggregation of colloidal silica. Phys Rev A 36, 3415–3426. Martin, J. E., Wilcoxon, J. P., Schaefer, D. & Odinek, J. (1990). Fast aggregation of colloidal silica. Phys Rev A 41, 4379–4391. Mountain, B. W., Benning, L. G. & Boerema, J. A. (2003). Experimental studies on New Zealand hot spring sinters: rates of growth and textural development. Can J Earth Sci 40, 1643–1667. Nielsen, A. E. (1959). The kinetics of crystal growth in barium sulfate precipitation. II. Temperature dependence and mechanism. Acta Chem Scand 13, 784–802. Oehler, J. H. & Schopf, J. W. (1971). Artificial microfossils: experimental studies of permineralization of blue-green algae in silica. Science 174, 1229–1231. Pancost, R. D., Pressley, S., Coleman, J. M., Benning, L. G. & Mountain, B. W. (2005). Lipid biomolecules in silica sinters: indicators of microbial biodiversity. Environ Microbiol 7, 66–77. Perry, C. C. (2003). Silicification: the processes by which organisms capture and mineralize silica. Rev Mineral Geochem 54, 291–327. Perry, C. C. & Fraser, M. A. (1991). Silica deposition and ultrastructure in the cell wall of Equisetum arvense: the importance of cell wall structures and flow control in biosilicification. Philos Trans R Soc Lond B Biol Sci 334, 149–157. Perry, C. C. & Keeling-Tucker, T. (2000). Biosilicification: the role of the organic matrix in structural control. J Biol Inorg Chem 5, 537–550. Phoenix, V. R., Adams, D. G. & Konhauser, K. O. (2000). Cyanobacterial viability during hydrothermal biomineralization. Chem Geol 169, 329–338. 65 Book 22/7/05 1:21 pm Page 148 use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511754852.008 Downloaded from https:/www.cambridge.org/core. University of Strathclyde, on 18 Jan 2017 at 16:56:12, subject to the Cambridge Core terms of Biosilicification by cyanobacteria 149 SGM symposium 65 Phoenix, V. R., Konhauser, K. O., Adams, D. G. & Bottrell, S. H. (2001). Role of biomineralization as an ultraviolet shield: implications for Archean life. Geology 29, 823–826. Phoenix, V. R., Konhauser, K. O. & Ferris, F. G. (2003). Experimental study of iron and silica immobilization by bacteria in mixed Fe–Si systems: implications for microbial silicification in hot springs. Can J Earth Sci 40, 1669–1678. Pontoni, D., Narayanan, T. & Rennie, A. R. (2002). Time-resolved SAXS study of nucleation and growth of silica colloids. Langmuir 18, 56–59. Rees, D. A. (1977). Polysaccharide Shapes. London: Chapman & Hall. Resch, C. M. & Gibson, J. (1983). Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J Bacteriol 155, 345–350. Rimstidt, J. D. & Barnes, H. L. (1980). The kinetics of silica–water reactions. Geochim Cosmochim Acta 44, 1683–1699. Rimstidt, J. D. & Cole, D. R. (1983). Geothermal mineralization. I. The mechanism of formation of the Beowawe, Nevada, siliceous sinter deposit. Am J Sci 283, 861–875. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61. Sangster, A. G. & Hodson, M. J. (1986). Silica in higher plants. Ciba Found Symp 121, 90–111. Schrader, M., Drews, G. & Weckesser, J. (1981). Chemical analysis on cell wall constituents of the thermophilic cyanobacterium Synechococcus PCC6716. FEMS Microbiol Lett 11, 37–40. Schultze-Lam, S., Ferris, F. G., Konhauser, K. O. & Wiese, R. G. (1995). In-situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation. Can J Earth Sci 32, 2021–2026. Scott, C., Fletcher, R. L. & Bremer, G. B. (1996). Observations of the mechanisms of attachment of some marine fouling blue-green algae. Biofouling 10, 161–173. Siever, R. (1992). The silica cycle in the Precambrian. Geochim Cosmochim Acta 56, 3265–3272. Simpson, T. L. & Volcani, B. E. (editors) (1981). Silicon and Siliceous Structures in Biological Systems. New York: Springer. Toporski, J. K. W., Steele, A., Westall, F., Thomas-Keprta, K. L. & McKay, D. S. (2002). The simulated silicification of bacteria – new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology 2, 1–26. Treguer, P., Nelson, D. M., van Bennekom, A. J., DeMaster, D. J., Leynaert, A. & Queguiner, B. (1995). The silica balance in the world ocean – a reestimate. Science 268, 375–379. Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A. & Hirata, A. (2003). Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223, 287–292. van der Meer, M. T., Schouten, S., Hanada, S., Hopmans, E. C., Damsté, J. S. & Ward, D. M. (2002). Alkane-1,2-diol-based glycosides and fatty glycosides and wax esters in Roseiflexus castenholzii and hot spring microbial mats. Arch Microbiol 178, 229–237. Walter, M. R., Bauld, J. & Brock, T. D. (1972). Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park. Science 178, 402–405. 65 Book 22/7/05 1:21 pm Page 149 use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511754852.008 Downloaded from https:/www.cambridge.org/core. University of Strathclyde, on 18 Jan 2017 at 16:56:12, subject to the Cambridge Core terms of 150 L. G. Benning and others SGM symposium 65 Walters, C. C., Margulis, L. & Barghoorn, E. S. (1977). On the experimental silicification of microorganisms. I. Microbial growth on organosilicon compounds. Precambrian Res 5, 241–248. Weckesser, J., Hofmann, K., Jürgens, U. J., Whitton, B. A. & Raffelsberger, B. (1988). Isolation and chemical analysis of the sheaths of the filamentous cyanobacteria Calothrix parietina and C. scopulorum. J Gen Microbiol 134, 629–634. Weed, W. H. (1889). Formation of travertine and siliceous sinter by the vegetation of hot springs. In United States Geological Survey Ninth Annual Report (1887–1888), pp. 613–676. Washington, DC: United States Geological Survey. Westall, F., Boni, L. & Guerzoni, E. (1995). The experimental silicification of microorganisms. Palaeontology 38, 495–528. Yee, N., Phoenix, V. R., Konhauser, K. O., Benning, L. G. & Ferris, F. G. (2003). The effect of cyanobacteria on silica precipitation at neutral pH: implications for bacterial silicification in geothermal hot springs. Chem Geol 199, 83–90
PY - 2005/1/1
Y1 - 2005/1/1
N2 - Introduction: The contribution of micro-organisms to amorphous silica precipitation in modern geothermal hot-spring environments has been the topic of intense study in the last three to four decades. Here, we present a review on the field and laboratory studies that have specifically addressed bacterial silicification, with a special focus on cyanobacterial silicification. Studies related to the biogenic silicification processes in diatoms, radiolarians and sponges are not discussed, despite the fact that, in the modern oceans (which are undersaturated with respect to silica), the diagenetic ‘ripening’ of such biogenic silica controls the global silica cycle (Dixit et al., 2001). It is well-known that the amorphous silica in these organisms (particularly in size, shape and orientation) is controlled primarily by the templating functions of glycoproteins and polypeptides (e.g. silaffin and silicatein). For information on these issues, we refer the reader to the extensive reviews by Simpson & Volcani (1981), Kröger et al. (1997, 2000), Baeuerlein (2000), Perry & Keeling-Tucker (2000), Hildebrand & Wetherbee (2003) and Perry (2003). In addition, in terrestrial environments, a large pool of amorphous silica is cycled through higher plants (grasses and trees) that are believed to use silicification as a protection mechanism against pathogens and insects. Information on these processes can be found in the papers by Chen & Lewin (1969), Sangster & Hodson (1986) and Perry & Fraser (1991).
AB - Introduction: The contribution of micro-organisms to amorphous silica precipitation in modern geothermal hot-spring environments has been the topic of intense study in the last three to four decades. Here, we present a review on the field and laboratory studies that have specifically addressed bacterial silicification, with a special focus on cyanobacterial silicification. Studies related to the biogenic silicification processes in diatoms, radiolarians and sponges are not discussed, despite the fact that, in the modern oceans (which are undersaturated with respect to silica), the diagenetic ‘ripening’ of such biogenic silica controls the global silica cycle (Dixit et al., 2001). It is well-known that the amorphous silica in these organisms (particularly in size, shape and orientation) is controlled primarily by the templating functions of glycoproteins and polypeptides (e.g. silaffin and silicatein). For information on these issues, we refer the reader to the extensive reviews by Simpson & Volcani (1981), Kröger et al. (1997, 2000), Baeuerlein (2000), Perry & Keeling-Tucker (2000), Hildebrand & Wetherbee (2003) and Perry (2003). In addition, in terrestrial environments, a large pool of amorphous silica is cycled through higher plants (grasses and trees) that are believed to use silicification as a protection mechanism against pathogens and insects. Information on these processes can be found in the papers by Chen & Lewin (1969), Sangster & Hodson (1986) and Perry & Fraser (1991).
KW - micro-organisms
KW - amorphous silica precipitation
KW - bacterial silification
UR - http://www.scopus.com/inward/record.url?scp=84926073073&partnerID=8YFLogxK
UR - https://doi.org/10.1017/CBO9780511754852
U2 - 10.1017/CBO9780511754852.008
DO - 10.1017/CBO9780511754852.008
M3 - Chapter
AN - SCOPUS:84926073073
SN - 0521862221
SN - 9780521862226
SP - 131
EP - 150
BT - Micro-Organisms and Earth Systems - Advances in Geomicrobiology: Published for the Society for General Microbiology
PB - Cambridge University Press
ER -