Biofabrication for soft tissue and cartilage engineering

Gareth Turnbull, Jon Clarke, Frédéric Picard, Weidong Zhang, Philip Riches, Bin Li, Wenmiao Shu

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Soft tissue injuries (STIs) affect patients of all age groups and represent a common worldwide clinical problem, resulting from conditions including trauma, infection, cancer and burns. Within the spectrum of STIs a mixture of tissues can be injured, ranging from skin to underlying nerves, blood vessels, tendons and cartilaginous tissues. However, significant limitations affect current treatment options and clinical demand for soft tissue and cartilage regenerative therapies continues to rise. Improving the regeneration of soft tissues has therefore become a key area of focus within tissue engineering. As an emerging technology, 3D bioprinting can be used to build complex soft tissue constructs "from the bottom up," by depositing cells, growth factors, extracellular matrices and other biomaterials in a layer-by-layer fashion. In this way, regeneration of cartilage, skin, vasculature, nerves, tendons and other bodily tissues can be performed in a patient specific manner. This review will focus on recent use of 3D bioprinting and other biofabrication strategies in soft tissue repair and regeneration. Biofabrication of a variety of soft tissue types will be reviewed following an overview of available cell sources, bioinks and bioprinting techniques.
Original languageEnglish
Pages (from-to)13-39
Number of pages27
JournalMedical Engineering and Physics
Volume82
Early online date9 Jul 2020
DOIs
Publication statusPublished - 31 Aug 2020

Keywords

  • biofabrication
  • bioink
  • cartilage
  • skin
  • nerves
  • blood vessels

Fingerprint

Dive into the research topics of 'Biofabrication for soft tissue and cartilage engineering'. Together they form a unique fingerprint.

Cite this