Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo

B. P. Abbott, S. V. Angelova, Nicholas Lockerbie, S. Reid, LIGO Scientific Collaboration, Virgo Collaboration

Research output: Contribution to journalArticle

114 Citations (Scopus)
3 Downloads (Pure)

Abstract

We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.

Original languageEnglish
Article numberL24
Number of pages30
JournalAstrophysical Journal Letters
Volume882
Issue number2
DOIs
Publication statusPublished - 9 Sep 2019

Keywords

  • LIGO
  • intermediate mass black hole binaries
  • IMBHBs
  • gravitational waves

Cite this