Abstract
Rodents are useful animal models in the study of the molecular and cellular mechanisms underlying various neural functions. For studying behavioral properties associated with multisensory functions in rats, we measured the speed and accuracy of target detection by the reaction-time procedure. In the first experiment, we utilized simple two-alternative-choice tasks, in which spatial cues are visual or auditory modalities, and conducted a cross-modal transfer test in order to determine whether rats recognize amodal spatial information. Rats showed successful performance in the cross-modal transfer test and the speed to respond to sensory stimuli was constant under a rule-consistent condition despite the change in cue modality. In the second experiment, we developed audiovisual two-alternative-choice tasks, in which both auditory and visual stimuli were simultaneously presented but one of the two modalities was task-relevant, in order to determine whether the response to the sensory stimulation of one modality is enhanced by the stimulation of a different modality. If bimodal stimuli were spatially coincident, the speed for detecting the relevant stimulus was shortened and the extent of the effect was comparable to those in past studies of humans and other mammals. These results indicate the cross-modal spatial abilities of rats and our present paradigms may provide useful behavioral tasks for studying the neural bases of multisensory processing and integration in rats.
Original language | English |
---|---|
Pages (from-to) | 409-417 |
Number of pages | 9 |
Journal | Experimental Brain Research |
Volume | 159 |
Issue number | 4 |
Early online date | 13 Jul 2004 |
DOIs | |
Publication status | Published - 31 Dec 2004 |
Keywords
- crossmodal binding
- intersensory
- multimodal
- spatial discrimination
- supramodal