Bandgap engineering in OH-functionalized silicon nanocrystals: interplay between surface functionalization and quantum confinement

Marius Bürkle*, Mickaël Lozac'h, Calum McDonald, Davide Mariotti, Koji Matsubara, Vladimir Švrček

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

In this work, a systematic first-principles study of the quasi-band structure of silicon nanocrystals (Si-NCs) is provided, focusing on bandgap engineering by combining quantum confinement of the electronic states with OH surface-functionalization. A mapping between the bandgap, Si-NC diameter, and the degree of hydroxide coverage is provided, which can be used as a guideline for bandgap engineering. Complementary to first-principles calculations, the photoluminescence (PL) wavelength of Si-NCs in the quantum-confinement regime is measured with well-defined diameters between 1 and 4 nm. The Si-NCs are prepared by means of a microplasma technique, which allows a surfactant-free engineering of the Si-NCs surface with OH groups. The microplasma treatment technique allows us to gradually change the degree of OH coverage, enabling us, in turn, to gradually shift the emitted light in the PL spectra by up to 100 nm to longer wavelengths. The first-principles calculations are consistent with the experimentally observed dependence of the wavelengths on the OH coverage and show that the PL redshift is determined by the charge transfer between the Si-NC and the functional groups, while on the other hand surface strain plays only a minor part.

Original languageEnglish
Article number1701898
Number of pages7
JournalAdvanced Functional Materials
Volume27
Issue number37
Early online date2 Aug 2017
DOIs
Publication statusPublished - 5 Oct 2017

Keywords

  • bandgap engineering
  • DFT calculations
  • photoluminescence measurements
  • silicon nanocrystals
  • solar cells

Fingerprint

Dive into the research topics of 'Bandgap engineering in OH-functionalized silicon nanocrystals: interplay between surface functionalization and quantum confinement'. Together they form a unique fingerprint.

Cite this