Abstract
A word $w=w_1w_2\cdots w_n$ is alternating if either $w_1<w_2>w_3<w_4>\cdots$ (when the word is up-down) or $w_1>w_2<w_3>w_4<\cdots$ (when the word is down-up). The study of alternating words avoiding classical permutation patterns was initiated by the authors in~\cite{GKZ}, where, in particular, it was shown that 123-avoiding up-down words of even length are counted by the Narayana numbers.However, not much was understood on the structure of 123-avoiding up-down words. In this paper, we fill in this gap by introducing the notion of a cut-pair that allows us to subdivide the set of words in question into equivalence classes. We provide a combinatorial argument to show that the number of equivalence classes is given by the Catalan numbers, which induces an alternative (combinatorial) proof of the corresponding result in~\cite{GKZ}.Further, we extend the enumerative results in~\cite{GKZ} to the case of alternating words avoiding a vincular pattern of length 3. We show that it is sufficient to enumerate up-down words of even length avoiding the consecutive pattern $\underline{132}$ and up-down words of odd length avoiding the consecutive pattern $\underline{312}$ to answer all of our enumerative questions. The former of the two key cases is enumerated by the Stirling numbers of the second kind.
Original language | English |
---|---|
Pages (from-to) | 2079-2093 |
Number of pages | 25 |
Journal | Discrete Mathematics |
Volume | 339 |
Publication status | Published - 2016 |
Keywords
- Dyck path
- alternating word
- up-down word
- pattern-avoidance
- Narayana number
- Catalan number
- Stirling number of the second kind