Autophagy protein 5 controls flow-dependent endothelial functions

Pierre Nivoit, Thomas Mathivet, Junxi Wu, Yann Salemkour, Devanarayanan Siva Sankar, Véronique Baudrie, Jennifer Bourreau, Anne-Laure Guihot, Emilie Vessieres, Mathilde Lemitre, Cinzia Bocca, Jérémie Teillon, Morgane Le Gall, Anna Chipont, Estelle Robidel, Neeraj Dhaun, Eric Camerer, Pascal Reynier, Etienne Roux, Thierry CouffinhalPatrick W. F. Hadoke, Jean-Sébastien Silvestre, Xavier Guillonneau, Philippe Bonnin, Daniel Henrion, Joern Dengjel, Pierre-Louis Tharaux, Olivia Lenoir*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
28 Downloads (Pure)

Abstract

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.
Original languageEnglish
Article number210
Number of pages1
JournalExperientia
Volume80
Issue number8
Early online date18 Jul 2023
DOIs
Publication statusPublished - 1 Aug 2023

Keywords

  • VEGFR2
  • autophagy
  • mechanosensing
  • flow-mediated dilatation
  • eNOS
  • endothelium

Fingerprint

Dive into the research topics of 'Autophagy protein 5 controls flow-dependent endothelial functions'. Together they form a unique fingerprint.

Cite this