Abstract
A novel algorithm for automatic 3D segmentation of magnetic resonance imaging (MRI) data for detection of head and neck cancerous lymph nodes (LN)) is presented in this paper. The proposed algorithm pre-processes the MRI data slices to enhance quality and reduce artefacts. A modified Fuzzy c-mean process is performed through all slices, followed by a probability map which refines the clustering results, to detect the approximate position of cancerous lymph nodes. Fourier interpolation is applied to create an isotropic 3D MRI volume. A new 3D level set method segments the tumour from the interpolated MRI volume. The proposed algorithm is tested on synthetic and real MRI data. The results show that the novel cancerous lymph nodes 3D volume extraction algorithm has over 0.9 Dice similarity score on synthetic data and 0.7 on real MRI data. The F-measure is 0.92 on synthetic data and 0.75 on real data.
Original language | English |
---|---|
Title of host publication | 2018 Signal Processing |
Subtitle of host publication | Algorithms, Architectures, Arrangements, and Applications (SPA) |
Place of Publication | Piscataway, NJ |
Publisher | IEEE |
Pages | 298-303 |
Number of pages | 6 |
ISBN (Electronic) | 9788362065332 |
ISBN (Print) | 9788362065318 |
DOIs | |
Publication status | Published - 6 Dec 2018 |
Event | Signal Processing Algorithms, Architectures, Arrangements and Applications (SPA) - Poznan, Poland Duration: 19 Sept 2018 → 21 Sept 2018 Conference number: 22 https://zueps41p.cse.put.poznan.pl/ |
Conference
Conference | Signal Processing Algorithms, Architectures, Arrangements and Applications (SPA) |
---|---|
Country/Territory | Poland |
City | Poznan |
Period | 19/09/18 → 21/09/18 |
Internet address |
Keywords
- MRI data
- head and neck cancer
- modified fuzzy c-mean
- probability map
- 3D level set method