Automated platform for microseismic signal analysis: denoising, detection and classification in slope stability studies

Research output: Contribution to journalArticle

10 Downloads (Pure)

Abstract

Microseismic monitoring has been increasingly used in the past two decades to illuminate (sub)surface processes such as landslides, due to its ability to record small seismic waves generated by soil movement and/or brittle behaviour of rock. Understanding the evolution of landslide processes is of paramount importance in predicting or even avoiding an imminent failure. Microseismic monitoring recordings are often continuous, noisy and consist of signals emitted by various sources. Manually detecting and distinguishing the signals emitted by an unstable slope is challenging. Research on automated end-to-end denoising, detection, and classification of microseismic events, as an early warning system, is still in its infancy. To this effect, our work is focused on jointly evaluating and developing suitable approaches for signal denoising, accurate event detection, non site-specific feature construction, feature selection and event classification. We propose an automated end-to-end system that can process big data sets of continuous seismic recordings fast and demonstrate applicability and robustness to a wide range of events (distant and local earthquakes, slidequakes, anthropogenic noise etc.). Algorithmic contributions lie in novel signal processing and analysis methods with fewer tunable parameters than the state of the art, evaluated on two field datasets and benchmarked against the state of the art.
Original languageEnglish
Number of pages11
JournalIEEE Transactions on Geoscience and Remote Sensing
Early online date3 Nov 2020
DOIs
Publication statusE-pub ahead of print - 3 Nov 2020

Keywords

  • microseismic analysis
  • graph based bilateral filter
  • slope stability

Fingerprint Dive into the research topics of 'Automated platform for microseismic signal analysis: denoising, detection and classification in slope stability studies'. Together they form a unique fingerprint.

Cite this