TY - JOUR
T1 - Assessment of predictive current control of six-phase induction motor with different winding configurations
AU - Shawier, Abdullah
AU - Habib, Abdelrahman
AU - Mamdouh, Mohamed
AU - Abdel-Khalik, Ayman Samy
AU - Ahmed, Khaled H.
N1 - © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2021/8/31
Y1 - 2021/8/31
N2 - Asymmetrical six-phase (A6P) induction motor-based drives can be considered as a well-established employed technology in high-power safety-critical industry sectors. Of the different control techniques proposed for multiphase machines, model predictive control (MPC) has recently been favored thanks to its simplicity, rapid dynamic response, and flexibility to define new control objectives. One of the main operating challenges when employing MPC to A6P induction machine is the poor quality of the phase current waveform due to the relatively low impedance of the secondary xy subspace. Although different controller structures have been introduced in the available literature to mitigate this problem, most of the available proposals, if not affecting the dc-link voltage utilization, will likely add to the control complexity. From the stator winding layout perspective, this paper attempts to investigate the effect of different winding configurations of six-phase stators with isolated neutral arrangements on the performance of predictive current control (PCC). This study shows that the winding configuration affect the mapping of the 64 available voltage vectors to the αβ and xy subspaces, the induced current ripples, and the required weighting factor employed in PCC. The theoretical findings have experimentally been validated using a 1kW twelve-phase machine that can externally be reconnected to form any of the three available six-phase winding configurations.
AB - Asymmetrical six-phase (A6P) induction motor-based drives can be considered as a well-established employed technology in high-power safety-critical industry sectors. Of the different control techniques proposed for multiphase machines, model predictive control (MPC) has recently been favored thanks to its simplicity, rapid dynamic response, and flexibility to define new control objectives. One of the main operating challenges when employing MPC to A6P induction machine is the poor quality of the phase current waveform due to the relatively low impedance of the secondary xy subspace. Although different controller structures have been introduced in the available literature to mitigate this problem, most of the available proposals, if not affecting the dc-link voltage utilization, will likely add to the control complexity. From the stator winding layout perspective, this paper attempts to investigate the effect of different winding configurations of six-phase stators with isolated neutral arrangements on the performance of predictive current control (PCC). This study shows that the winding configuration affect the mapping of the 64 available voltage vectors to the αβ and xy subspaces, the induced current ripples, and the required weighting factor employed in PCC. The theoretical findings have experimentally been validated using a 1kW twelve-phase machine that can externally be reconnected to form any of the three available six-phase winding configurations.
KW - six-phase
KW - dual three-phase
KW - asymmetrical
KW - symmetrical
KW - predictive current control
KW - voltage space decomposing
UR - https://ieeeaccess.ieee.org/
U2 - 10.1109/ACCESS.2021.3085083
DO - 10.1109/ACCESS.2021.3085083
M3 - Article
VL - 9
SP - 81125
EP - 81138
JO - IEEE Access
JF - IEEE Access
SN - 2169-3536
M1 - 9444459
ER -